أدلة السلف المشترك

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث

اكتشف العلماء الذين يعملون في تخصصات مختلفة على مدى سنين أدلة على السلف المشترك لكل الكائنات الحية. وقد أثبتت هذه الأدلة حدوث التطور وقدمت معلومات وافرة حول العمليات الطبيعية التي تطورت بها الحياة بأنواعها واختلافها على كوكب الأرض. هذه الأدلة تدعم الاصطناع التطوري الحديث، وهو النظرية العلمية التي تشرح كيفية تغير الحياة مع مرور الزمن وأسباب ذلك. يوثق علماء الأحياء التطوريون حقيقة الأصل المشترك بوضع تنبؤات يمكن اختبارها، والتحقق من الفرضيات، وتطوير نظريات تمثل لها وتصف أسبابها.

كشفت مقارنات سلاسل الحمض النووي للكائنات عن أن الكائنات الأقرب وراثيًا تتشابه بدرجة أكبر في سلاسلها عن الكائنات الأبعد وراثيًا. جاءت أدلة أخرى على الأصل المشترك من المخلفات الجينية كالمورثات الكاذبة، وهي مناطق في DNA تتنادّ مع جين في موجود في متعضية قريبة، لكنها لم تعد فعالة ويبدو أنها تسير في عملية انحلال مستمرة.

الأحافير مهمة لتقدير زمن تطور سلالات مختلفة في الزمن الجيولوجي. وبما أن التحجر حادثة نادرة تتطلب عادة وجود أجزاء صلبة في جسد الكائن وموته قرب موقع تخزَّن فيه الرواسب، فإن سجل الأحافير لا يقدم إلا معلومات قليلة ومتقطعة حول تطور الحياة. أدلة تواجد المتعضيات قبل تطور أجزاء الجسد الصلبة كالأصداف والعظام في غاية الندرة، لكنها موجودة في صورة أحافير دقيقة قديمة، إضافة إلى انطباعات لأجساد مختلف الكائنات لينة الجسد. دراسة التشريح المقارن لمجموعات من الحيوانات تظهر خصائص بنيوية متماثلة أو متناددة، مما يبين العلاقات الوراثية مع متعضيات أخرى، خاصةً عند مقارنتها بأحافير لمتعضيات قديمة منقرضة. تعتبر التركيبات الأثارية ومقارنات النمو الجنيني عوامل مهمة في تحديد مدى التشابه التشريحي بالتوافق مع الأصل المشترك. وبما أن العمليات الأيضية لا تخرج من الأحافير، فإن البحث في تطور العمليات الخليوية البسيطة يجري إلى حد بعيد بمقارنة فسيولوجيا المتعضيات الحالية وكيميائها الحيوية. تفرع العديد من السلاسل في مراحل مختلفة من النمو، ولذلك فإنه من الممكن تحديد زمن ظهور عمليات أيضية محددة بمقارنة صفات أفراد سلالات السلف المشترك. كما يُظهر التنظيم الحيوكيميائي المشترك وأنماط التنوع الجزيئي في المتعضيات علاقة مباشرة باشتراك السلف.

يقدم فرع الجغرافيا الحيوية المزيد من الأدلة؛ لأن التطور والسلف المشترك يقدمان أفضل التفسيرات وأكثرها شمولًا لعدد كبير من الحقائق المتعلقة بالتوزيع الجغرافي للنباتات والحيوانات حول العالم. يتجلى هذا أكثر في حقل الجغرافيا الحيوية للجُزر. تتيح حقيقة السلف المشترك مع تكتونيات الصفائح طريقة لجمع حقائق توزيع أنواع الأحياء حاليًا مع أدلة السجل الأحفوري لتقديم تفسير متسق منطقيًا لكيفية تغير التوزيع الجغرافي للكائنات الحية عبر الزمن.

تطور البكتيريا المقاومة للمضادات الحيوية وانتشارها، وانتشار أنواع النباتات والحشرات المقاومة للمبيدات، يقدمان دليلًا على أن التطور بالاصطفاء الطبيعي عملية مستمرة في العالم الطبيعي. كما أنه قد لوحظت أمثلة لانفصال تجمعات من نوع واحد إلى عدة أنواع جديدة (الانتواع). لوحظ الانتواع كذلك بطريقة مباشرة وغير مباشرة في المختبر وفي الطبيعة. وقد وُصفت عدة من تلك وقائع ووُثقت أمثلةً لأنماط معينة من الانتواع. علاوة على ذلك، فإن الأدلة على السلف المشترك تمتد من التجارب المعملية المباشرة بالاصطفاء الصناعي للمتعضيات حاليًا وفي السابق، إضافة إلى تجارب أخرى مضبوطة تشمل كثيرًا من مواضيع هذا المقال. يشرح هذا المقال الأنواع المختلفة لأدلة التطور من سلف مشترك، ويسرد أمثلة محددة كثيرة لكل من تلك الأدلة.

محتويات

أدلة من علم وظائف الأعضاء المقارن والكيمياء الحيوية المقارنة[عدل]

علم الوراثة[عدل]

جمع تشارلز دارون عددًا كبيرًا من العينات أثناء ترحاله على متن سفينة بيغل، وكان كثير من تلك العينات جديد على العلم، مما دعم نظريته التي وضعها لاحقًا والتي جعلت الاصطفاء الطبيعي آلية للتطور.

دراسة سلاسل المورثات تقدم أحد أقوى الدلائل على الأصل المشترك. يفحص تحليل المتسلسلات المقارن العلاقة بين سلاسل دنا لدى الأنواع المختلفة،[1] مما يقدم عدة أدلة تبرهن فرضية دارون الأصلية بالأصل المشترك. إن كانت فرضية الأصل المشترك صحيحة، فستكون الأنواع التي تشترك في السلف قد ورثت سلاسل دنا من ذلك السلف المشترك إضافة إلى الطفرات التي تميز ذلك السلف. وستشترك الأنواع الأكثر قرابة في جزء أكبر من سلاسل دنا المتطابقة عن ما إذا قورنت بأنواع تصلها بها قرابة أضعف.

أقوى هذه الأدلة وأبسطها يأتينا من الاستبناء الوراثي. عادةً ما تكون تلك الاستبناءات قوية، خاصةً عند استخدام سلاسل بروتين بطيئة التطور في إنشائها، ويمكن استخدامها لاستبناء جزء كبير من التاريخ التطوري للمتعضيات الحديثة، بل والتاريخ التطوري للمتعضيات المنقرضة كما في السلاسل الوراثية المستخرجة من الماموث، والنياندرتال، والتيرانوصور. تثبت تلك العلاقات المستبناة وراثيًا استبناءات العلاقات التي تعتمد على الدراسات التشكّلية أو الحيوكيميائية. أجريت أكثر الاستبناءات دقة في دراسة جينوم الميتوكوندريا الذي تشترك فيه كل المتعضيات حقيقيات النوى، وهو جينوم قصير وسهل الدراسة. أما أكثر الاستبناءات اتساعًا فقد أجريت اعتمادًا على سلاسل بضعة بروتينات قديمة جدًا أو على سلاسل رنا الريبوسومي.

تمتد العلاقات الوراثية كذلك إلى مجموعة كبيرة من العناصر التسلسلية غير الوظيفية كالتكرارات، والينقولات، والمورثات الكاذبة، والطفرات في السلاسل المرمّز للبروتين والتي لا تغير في سلسلة الأحماض الأمينية. بالرغم من أن قلة من هذه العناصر يمكن أن تكتشف لها وظائف لاحقًا، إلا أنها في الجملة توضح أن التطابق لابد أنه نتيجة الأصل المشترك وليس الوظيفة المشتركة.

التنظيم الحيوكيميائي الشامل وأنماط التنوع الجزيئي[عدل]

تعتمد كل المتعضيات المعاصرة المعروفة على العمليات الحيوكيميائية ذاتها: ترمَّز المعلومات الوراثية في صورة حمض نووي (دنا، ورنا في الفيروسات)، وتنتسَخ إلى رنا، ثم تترجَم إلى بروتينات (أي مكوثرات من الأحماض الأمينية) بواسطة ريبوسومات محافظة. يتضح ذلك أكثر عند ملاحظة أن الشفرة الجينية ("مفتاح الترجمة" بين الدنا والأحماض النووية) موحدة في كل المتعضيات تقريبًا؛ أي أنه إن وُجدت قطعة دنا في بكتيريا فإنها ترمّز للحمض الأميني نفسه الذي ترمز له إن وجدت في خلية بشرية. ثلاثي فوسفات الأدينوسين هو عملة الطاقة لدى كل أشكال الحياة المعاصرة. كما أن علم الأحياء التطوري التنموي يظهر أن اشتراك التشكل هو في الواقع نتيجة لاشتراك العناصر الوراثية.[2] مثلًأ: على الرغم من اعتقاد أن العين شبيهة الكاميرا تطورت مرات عديدة منفصلة،[3] إلان أنها تتقاسم مجموعة مشتركة من البروتينات مستشعرة الضوء (أوبسينات)، مما يدل على نقطة أصل مشتركة لكل الكائنات المبصرة.[4][5][6] من الأمثلة الأخرى الجديرة بالذكر خطة جسم الكائنات الفقارية المعروفة، والتي تحدد بنيتها عائلة العلبة المثلية (Hox) من المورثات.

سَلسَلة الحمض النووي[عدل]

المقال الرئيسي: سلسلة الحمض النووي

تتيح مقارنة سلاسل دنا تجميع المتعضيات حسب تشابه سلاسلها، وعادة ما تتطابق أشجار التطور مع التصنيف التقليدي، وكثيرًا ما تستخدم العلاقات التطورية لإثبات التصنيف أو تصحيحه. تعَد مقارنة السلاسل مقياسًا قويًا بما يكفي لتقويم الافتراضات الخاطئة في شجرة التطور إذا قلت الأدلة الأخرى. مثلًا: تتباين سلسلة دنا الإنسان بمقدار ما يقارب 1,2% عن أقرب أقربائه الوراثيين، الشمبانزي، وبقرابة 1,6% عن الغوريلا، و6,6% عن البابون.[7][8] لذلك يتيح دليل السَلسلة الوراثية استنتاج مدى القرابة الوراثية وتقديرها بين الإنسان والقردة الأخرى.[9][10] استُخدمت سلسلة مورثة رنا الريبوسومي 16 س (مورثة أساسية ترمّز لجزء من الريبوسوم) للعثور على علاقات وراثية واسعة بين كل الأحياء المعاصرة. أجرى ذلك البحث أولًا كارل ووز عام 1977،[11][12] وكانت نتيجة ذلك البحث إيجاد النظام ثلاثي النطاقات الذي ينص على أنه حدث انقسامان رئيسيان في بداية تطور الحياة؛ نتج عن الانقسام الأول البكتيريا الحديثة وعن الانقسام الآخر نتجت العتائق وحقيقيات النوى.

الفيروسات القهقرية الداخلية[عدل]

الفيروسات القهقرية الداخلية (ERVs) هي سلاسل في الجينوم بقيت من عدوى فيروسية قديمة في المتعضية. دائمًا ما توَرَّث تلك الفيروسات القهقرية إلى الجيل التالي من المتعضية المصابة. هذا يحافظ على المورثة الفيروسية في جينوم المتعضية. ولأن هذا الحدث نادر وعشوائي، فإن العثور على مورثات فيروسية في موضعين متماثلين على صبغيين من نوعين مختلفين من المتعضيات يشير إلى سلف مشترك بينهما.[13] انظر أمثلة ذلك في الإنسان وفي القطط أدناه.

البروتينات[عدل]

تدعم الأدلة البروتيومية شمولية أصل الحياة. البروتينات الحيوية كالريبوسوم، والدنا بولمريز والرنا بولمريز توجد في كل الكائنات بدءًا بأكثر البكتيريا بدائية وحتى أكثر الثدييات تعقيدًا. الجزء الرئيسي في البروتين محفوظ في كل سلالات الحياة ويؤدي وظائف متشابهة. طورت المتعضيات الأكثر تعقيدًا وحدات بروتين إضافية، مما يؤثر بقوة على تنظيمه وتآثرات البروتين-بروتين في مركزه. التشابه المترابط بين سلاسلات كل المتعضيات المعاصرة؛ مثل الدنا، والرنا، والأحماض الأمينية، وطبقة الدهن الثنائية تدعم كلها نظرية السلف المشترك. التحليل الوراثي للسلاسل البروتينية الموجودة في متعضيات متعددة ينتج أشجار علاقة وراثية متشابهة.[14] التماكب الضوئي للدنا، والرنا، والأحماض الأمينية محفوظ من الأصل المشترك في كل أشكال الحياة المعروفة. وبما أنه لا توجد أفضلية وظيفية لليدوانية التيأمنية أو التياسرية فإن أبسط فرضية هي أن الاختيار وقع عشوائيًا في المتعضيات القديمة ووَرِثت ذلك إلى كل أشكال الحياة المعاصرة من خلال سلفها المشترك. يأتي مزيد من الأدلة لاستبناء السلالات الوراثية من فضلة الدنا مثل المورثات الكاذبة، وهي مورثات "ميتة" تتراكم فيها الطفرات بانتظام.[15]

المورثات الكاذبة[عدل]

المقال الرئيسي: مورثة كاذبة المورثات الكاذبة (المعروفة أيضًا باسم الدنا غير المشفِّر) هي سلاسل دنا في الجينوم ولا تُنسخ إلى رنا لتصنيع البروتينات. بعض هذا الدنا غير المشفر له وظائف معروفة، ولكن أكثره ليست له وظيفة معروفة ويسمى "فضلة الدنا". هذا مثال على الأثارية؛ لأن مضاعفة هذه المورثات تستهلك طاقة، مما يجعل الأمر إهدارًا tي كثير من الحالات. تشكل المورثات الكاذبة 99% من الجينوم البشري (1% دنا وظيفي).[16] يمكن أن تنتج مورثة كاذبة عندما تحدث طفرة لمورثة مشفِّرة وتمنع نسخه، مما يعطل وظيفته، لكن لأنه لا يُنسخ فيمكن أن يختفي دون أن يؤثر على صلاح المتعضية إلا إن أوجد ذلك وظيفة جديدة نافعة للدنا غير المشفر. يمكن أن تنتقل المورثات الكاذبة غير العاملة إلى الجيل التالي من النوع، وهذا يجعل من الواضح أن النوع التالي خلف للنوع الأول.

آليات أخرى[عدل]

توجد أيضًا أدلة جزيئية كثيرة لعدد من الآليات المختلفة للتغييرات التطورية الكبيرة، منها: الجينوم وتضاعف المورثات، الذي يسهل التطور السريع عن طريق توفير كميات كبيرة من المادة الوراثية بقيود انتقائية ضعيفة أو بغيابها. كذلك نقل الجينات الأفقي، وهي عملية نقل المادة الوراثية إلى خلية أخرى ليست من ذرية المتعضية، مما يتيح للأنواع اكتساب مورثات نافعة من بعضها. إضافةً إلى التأشيب الذي يسمح بإعادة ترتيب أعداد كبيرة من الألّيلات المختلفة ويسمح بإقامة انعزال تكاثري. تشرح نظرية التعايش الداخلي أصل الميتوكوندريا والصانعات الخلوية (مثل الصانعات اليخضورية)، وهي عضيات في خلايا حقيقيات النوى، على أنه دمج لخلية عتيقة بدائية النواة في خلية عتيقة حقيقية النواة. تضع هذه النظرية آلية لقفزات تطورية مفاجئة بدمج المادة الوراثية والتركيب الحيوكيميائي لنوعين مختلفين بدلًا من تطور عضيات حقيقيات النوى ببطء. وُجدت ادلة تدعم هذه النظرية في الطلائعية Hatena arenicola؛ فهي تفترس خلية طحلب أخضر وتبتلعها، فتتصرف خلية الطحلب الأخضر كمتعايش داخلي يغذي Hatena التي تفقد جهازها الغذائي وتتصرف ككائن ذاتي التغذية.[17][18]

بما أن العلميات الأيضية لا تغادر الأحافير، فإن البحث في تطور العمليات الخليوية البسيطة يجري إلى حد بعيد بمقارنة المتعضيات المعاصرة. تفرعت سلالات عديدة مع ظهور عمليات أيضية جديدة، ويمكن -نظريًا- تحديد زمن ظهور عمليات أيضية محددة بمقارنة صفات ذرية السلف المشترك أو بملاحظة التظاهرات الفيزيائية لتلك الصفات. على سبيل المثال، ظهور الأكسجين في غلاف الأرض الجوي مرتبط بتطور التمثيل الضوئي.

أمثلة محددة[عدل]

الصبغي 2 في الإنسان[عدل]

التحام صبغيين لدى السلف أسفر عنه وجود بقايا تيلومير ومشطر أثاري

يمكن مشاهدة أحد أدلة تطور الإنسان من سلف مشترك مع الشمبانزي بالنظر إلى عدد صبغيات الإنسان مقارنةً ببقية القردة العليا؛ فكل القردة العليا باستثناء الإنسان تملك 24 زوجًا من الصبغيات، أما الإنسان فلديه 23 زوجًا فقط. الصبغي الإنساني رقم 2 هو نتيجة التحام طرفي بين صبغيين سلفيين.[19][20]

من أدلة ذلك ما يلي:

  • توافق الصبغي الإنساني 2 مع صبغيين لدى بقية القردة. أقرب أقرباء الإنسان -الشمبانزي العام- لديه سلاسل دنا شبه مطابقة لتلك الموجودة في الصبغي 2 لدى الإنسان، لكنها موجودة لدى الشمبانزي في صبغيين منفصلين. الأمر ذاته ينطبق على الأقرباء الأبعد من ذلك كما في الغوريلا والأورانغوتان.[21][22]
  • وجود مشطر أثاري. المعتاد أن يكون في كل صبغي مشطر واحد فقط، لكن في الصبغي 2 توجد بقايا صبغي آخر.[23]
  • وجود تيلوميرين أثاريين. عادة ما تكون التيلوميرات موجودة في نهايتي الصبغي فقط، ولكن في الصبغي 2 توجد سلسلتا تيلومير إضافيتين في المنتصف.[24]

لذلك فإن الصبغي 2 يقدم أدلة قوية تدعم اشتراك السلف بين الإنسان والقردة الأخرى. يقول ي. ف. أيدو: "نستنتج أن الموقع المستنسخ في الكوزميدين c8.1 وc29B هو أثر التحام تيلوميري-تيلوميري عتيق ويشير إلى اللحظة التي التحم فيها صبغيان قرديان ليعطيا الصبغي الإنساني 2"."[24]


الأصل الأفريقي للإنسان الحديث[عدل]

النماذج الرياضية للتطور التي كان من روادها أمثال سيوال رايت، ورونالد فيشر، وجون هالدين، والتي وسّعتها نظرية الانتشار التي وضعها كيمورا موتو، تتيح تلك النماذج التنبؤ بالبنية الوراثية للتجمعات التي تخضع للتطور. كما أن الاختبار المباشر للبنية الوراثية في التجمعات الحديثة عن طريق سلسلة الدنا قد أتاح للعلماء التحقق من كثير من تلك التنبؤات. على سبيل المثال: نظرية المنشأ الأفريقي للإنسان، والتي تقول بأن الإنسان الحديث تطور في أفريقيا وهاجر تجمع صغير من أفراده إلى القارات الأخرى (في ما يمثل عنق زجاجة سكانية)، تعني هذه النظرية ضمنيًا أنه لابد أن نجد في التجمعات الحديثة علامات ذلك النمط من الهجرة. وتحديدًا، فإنه يفترض أن نجد في التجمعات التي تلت عنق الزجاج (الأوروبيون والآسويون) مستويات أقل في التنوع الوراثي عمومًا وأن نلاحظ توزيعًا أكثر انتظامًا في تكرارات الأليلات عند مقارنتهم بالتجمع السكاني الأفريقي. ثبتت صحة التنبؤين السابقين ببيانات حقيقية من مجموعة من الدراسات.[25]

الفيروسات القهقرية الداخلية في الإنسان[عدل]

يحمل الإنسان الكثير من الفيروسات القهقرية التي تمثل ما يقارب 8% من جينومه.[26] يشترك الإنسان والشمبانزي في سبع مورثات فيروسية مختلفة، وتشترك الرئيسيات كلها في فيروسات قهقرية مشابهة تنسجم مع علم الوراثة العرقي.[27]

الفيروسات القهقرية الداخلية في القطط[عدل]

تقدم السنوريات مثالًا آخر على سلسلة مورثة فيروسية وُجدت في سلف مشترك. تحتوي الشجرة التطورية للسنوريات قططًا صغيرة (مثل سنور الأدغال، والقط البري، والقط المنزلي) تفرعت عن أنواع القطط الكبيرة مثل تحت عائلة النمرية ولواحم أخرى. حقيقة وجود مورثة فيروسية داخلية لدى القطط الصغيرة حيث لا توجد في القطط الكبيرة تشير إلى أن تلك المورثة أُضيفت في جينوم سلف القطط الصغيرة بعد تفرع القطط الكبيرة عنها.[28]

أدلة من علم التشريح المقارن[عدل]

تكشف الدراسة المقارنة لتشريح مجموعات من الحيوانات أو النباتات عن تشابه عام في خصائص بنيوية معينة. مثلًا: البنية الأساسية لكل الأزهار تتكون من سبلات، وبتلات، ومبيض وقلم وميسم؛ إلا أن أحجام الأزهار، وألوانها، وأعداد أجزائها، وبنياتها الخاصة متباينة بين الأنواع.

التأسل الرجعي[عدل]

التأسل هو الرجعية التطورية، مثل ظهور صفات على متعضية مرة أخرى بعد أن انحسرت منذ أجيال.[29] يقع التأسل لأن مورثات الخصائص الظاهرية التي وجدت في السابق ما زالت محفوظة في الدنا، وإن كانت تلك المورثات لا يعبَّر عنها ظاهريًا في أغلب المتعضيات التي تحوزها.[30] من أمثلة ذلك ظهور الأرجل الخلفية في الثعابين[31] أو الحيتان[32] (انظر الأمثلة المحددة أدناه)، وأصابع الأقدام الزائدة لدى الحافريات والتي لا تصل إلى الأرض أصلًا،[33] ووجود أسنان للدجاج،[34] وعودة التكاثر الجنسي في Hieracium pilosella وCrotoniidae بعد اختفائه،[35] وظهور ذيل للإنسان،[29] وظهور حلمات زائدة،[31] وتضخم الأنياب.[31]

علم الأحياء التطوري التنموي والنمو الجنيني[عدل]

علم الأحياء التطوري التنموي هو فرع علم الأحياء الذي يعنى بمقارنة عملية النمو في متعضيات مختلفة لتحديد العلاقات الوراثية بين أنواعها. تحتوي جينومات مجموعة متنوعة من المتعضيات جزءًا صغيرًا من المورثات التي تتحكم في نمو المتعضية. تعد مورثات العلبة المثلية من أمثلة تلك المورثات الشاملة في المتعضيات كلها تقريبًا والتي تشير إلى أصل السلف المشترك. يظهر الدليل الجنيني من دراسة نمو المتعضيات في طورها الجنيني ومقارنته بأجنة متعضيات أخرى وملاحظة التشابه بينها. عادة ما تظهر بقايا صفات سلفية وتختفي أثناء مراحل النمو الجنيني المختلفة. من أمثلة ذلك إنماء الشعر وفقدانه (زغب) أثناء نمو جنين الإنسان،[36] ووجود التحول الظاهري أثناء النمو الجنيني لدى الثدييات من مظهر الأسماك إلى البرمائيات إلى الزواحف وحتى الثدييات، ونمو الكيس المحّي ثم تنكّسه، وكون الضفادع والسمندلات البرية تمر بطور اليرقة -التي تتصف بصفات اليرقات المائية- داخل البيضة ولكنها تفقس جاهزة للحياة على اليابسة،[37] وظهور تركيبات خيشومية الشكل (الأقواس البلعومية) أثناء نمو الجنين الفقاري، والتي تستمر في النمو لدى الأسماك في صورة أقواس خيشومية حيث تشكل منشأ عدد من التركيبات في الرأس والعنق تختلف عن التي تنتجها الأقواس البلعومية في الإنسان مثلًا.

التنادد البنيوي والتطور التباعدي (التكيفي)[عدل]

إن كانت مجموعتان متباعدتان من المتعضيات قد انحدرتا من أصل مشترك فمن المتوقع أن يكونا مشتركتين في خصائص أساسية معينة. يفترض أن تحدد درجة التشابه بين متعضيتين مدى قرابتهما تطوريًا:

  • يُفترض أن المجموعات التي تتشارك صفات قليلة قد تفرعت عن أصل مشترك في زمن أقدم في التاريخ الجيولوجي عن تلك التي تتشابه كثيرًا.
  • عند تقدير مدى القرابة التطورية بين حيوانين، يبحث عالم الأحياء المقارن عن البنى المتشابهة جوهريًا، حتى وإن كان لها وظائف مختلفة في الحيوان البالغ. تسمى هذه البنى بالمتناددة، وهي تشير إلى اشتراك الأصل.
  • في حالات تشابه بنيتين واختلاف وظائفهما قد يكون من الضروري تتبع أصلهما ونموهما الجنيني. تشابه الأصل التنموي يشير إلى تطابق البنيتين، وعليه ترجيح أنهما مشتقتان من سلف مشترك.

عندما تتشارك مجموعة من المتعضيات في بنية متناددة تؤدي وظائف متعددة للتكيف مع ظروف بيئية وأنماط حياة مختلفة فإن ذلك يسمى التشعب التكيفي. ويسمى الانتشار التدريجي للمتعضيات ذات التشعب التكيفي بالتطور التباعدي.

التصنيف والمراتب المتداخلة[عدل]

يعتمد التصنيف على حقيقة أن المتعضيات كلها مرتبطة وراثيًا في مراتب متداخلة مبنية على أساس الخصائص المشتركة. يمكن توزيع أغلب الأنواع المعاصرة في تصنيف مراتبي متداخل بسهولة. يتضح هذا من نظام التصنيف اللينيوسي. يمكن وضع الأنواع القريبة في مجموعة واحدة (كالجنس) اعتمادًا على الخصائص المشتركة بينها، ويمكن أن تُجمع عدة أجناس في فصيلة واحدة، وأن تجمع عدة فصائل معًا في رتبة واحدة...إلخ.[38] اكتشف كثير من العلماء وجود هذه المراتب المتداخلة قبل دارون، ولكنه وضح أن نظريته التطورية بسلفها المشترك ونمطها المتشعب تستطيع تفسير تلك المراتب.[38][39] وصف دارون كيف يمكن أن يكون اعتماد الأصل المشترك قاعدة منطقية للتصنيف:[40]

   
أدلة السلف المشترك
إذا لم أكن في غاية الوهم، فإن كل ما سبق من قواعد وتسهيلات وصعوبات تصبح واضحة على أساس أن النظام الطبيعي مبني على التناسل مع التحوّر، وعلى أن الخصائص التي يرى الطبائعيون أنها تظهر قرابة حقيقية بين نوعين أو أكثر هي التي وُرثت عن سلف مشترك، وعلى ذلك فإن التصنيف الحقيقي تصنيف نَسَبي، وإن اشتراك السلف هو الرابطة الخفية التي يبحث عنها الطبائعيون لاشعوريًا...
   
أدلة السلف المشترك

—تشارلز دارون، أصل الأنواع، صفحة 577

البنى الأثارية[عدل]

تظهر أدلة قوية ومباشرة على السلف المشترك من دراسة البنى الأثارية.[41] تطلق تسمية العضو الأثاري على الأجزاء الجسدية الردمية التي تمتاز بصغر الحجم والضعف لدى مقارنتها بنظيرتها في نوع السلف. عادة ما تكون هذه الأعضاء ضعيفة ونموها متخلف. يمكن تفسير وجود الأعضاء الأثارية باعتبار التغيرات البيئية المحيطة بالنوع أو تغيرات نمط حياته. تكون تلك الأعضاء عاملة عادة في النوع السلفي ولكنها فقدت وظيفتها أو غيرتها. من أمثلة ذلك الحزام الحوضي لدى الحيتان، والأثقال (الأجنحة الخلفية) في الذباب والبعوض، وأجنحة الطيور غير الطائرة كالنعام، وأوراق بعض النباتات الصحراوية (مثل الصبار) والنباتات الطفيلية (مثل الحامول). إلا أن البنى الأثارية يمكن أن تستبدل وظائفها بوظائف جديدة. مثلًا: أثقال ذوات الجناحين تساعد في موازنة الحشرة أثناء طيرانها، وجناحا النعامة يستخدمان في طقوس التزاوج.

   
أدلة السلف المشترك
أكثر الاستنتاجات منطقية هي أن هذه المخلوقات انحدرت من مخلوقات كانت فيها تلك الأجزاء عاملة، مما يشير إلى أن أغلب (بل جميع) المخلوقات تنحدر من أسلاف مشتركين.
   
أدلة السلف المشترك

—ناتان سلفكن، "التحدي الخَلقي"، صفحة 262

أمثلة محددة[عدل]

شكل 3أ: هيكل عظمي للحوت الباليني موضح عليه الطرف الخلفي وعظمة الحوض بدائرة حمراء. هذا التركيب العظمي يبقى داخليًا طيلة حياة هذا النوع.
شكل 3أ: هيكل عظمي للحوت الباليني موضح عليه الطرف الخلفي وعظمة الحوض بدائرة حمراء. هذا التركيب العظمي يبقى داخليًا طيلة حياة هذا النوع.
شكل 3ب: تكيف أجزاء فم الحشرات. ق: قرن استشعار. ع: عين مركبة. ش.ع: شفة عليا. ش.س: شفة سفلى. ف.ع: فك علوي. ف.س: فك سفلي. (أ) الحالة البدائية — للعض والمضغ: مثل الجندب؛ قوة الفكين العلويين والفكين السفليين للتحكم في الغذاء ومعالجته.  (ب) القرص والعض: مثل نحلة العسل؛ الشفة السفلى طويلة للعق الرحيق، والفكان العلويان يمضغان حبوب اللقاح ويشكّلان الشمع.  (ج) الامتصاص: مثل الفراشة؛ الشفة العيا مختزلة، والفك العلوي مفقود، والفك السفلي طويل ويكوّن أنبوبًا للامتصاص.  (د) الاختراق والامتصاص: مثل أنثى البعوض؛ الشفة العليا والفك السفلي يكونان أنبوبًا، والفكان العلويان يكوّنان إبرتين خازقتين، والشفة العليا عليها أخدود يسمح باحتواء أجزاء أخرى.
شكل 3ب: تكيف أجزاء فم الحشرات. ق: قرن استشعار. ع: عين مركبة. ش.ع: شفة عليا. ش.س: شفة سفلى. ف.ع: فك علوي. ف.س: فك سفلي. (أ) الحالة البدائية — للعض والمضغ: مثل الجندب؛ قوة الفكين العلويين والفكين السفليين للتحكم في الغذاء ومعالجته.
(ب) القرص والعض: مثل نحلة العسل؛ الشفة السفلى طويلة للعق الرحيق، والفكان العلويان يمضغان حبوب اللقاح ويشكّلان الشمع.
(ج) الامتصاص: مثل الفراشة؛ الشفة العيا مختزلة، والفك العلوي مفقود، والفك السفلي طويل ويكوّن أنبوبًا للامتصاص.
(د) الاختراق والامتصاص: مثل أنثى البعوض؛ الشفة العليا والفك السفلي يكونان أنبوبًا، والفكان العلويان يكوّنان إبرتين خازقتين، والشفة العليا عليها أخدود يسمح باحتواء أجزاء أخرى.
شكل 3 ج: مبدأ التنادد ممثلًا بالتنوع التكيفي للطرف الأمامي في الثدييات. كل الأطراف تتبع النمط خماسي الأصابع الأساسي، لكن كل منها معدل لاستخدامات مختلفة. عظمة المشط الثالثة مظللة باللون الوردي في الرسم، والكتف مظلل بنقش مخطط.
شكل 3 ج: مبدأ التنادد ممثلًا بالتنوع التكيفي للطرف الأمامي في الثدييات. كل الأطراف تتبع النمط خماسي الأصابع الأساسي، لكن كل منها معدل لاستخدامات مختلفة. عظمة المشط الثالثة مظللة باللون الوردي في الرسم، والكتف مظلل بنقش مخطط.
شكل 3 د: رسم لحوض الليسوثوصور الدياغنوستي (يمين) الذي ينتمي لرتبة طيريات الورك، ورسم لحوض الإيورابتور الليونيسي (يسار) والذي ينتمي إلى رتبة سحليات الورك في الرتبة العليا ديناصوريات. يظهر التحول في أشكال أجزاء الحوض مع مرور الزمن. رسم الفروع الحيوية موضوع لتوضيح مسافة التباعد بين النوعين.
شكل 3 د: رسم لحوض الليسوثوصور الدياغنوستي (يمين) الذي ينتمي لرتبة طيريات الورك، ورسم لحوض الإيورابتور الليونيسي (يسار) والذي ينتمي إلى رتبة سحليات الورك في الرتبة العليا ديناصوريات. يظهر التحول في أشكال أجزاء الحوض مع مرور الزمن. رسم الفروع الحيوية موضوع لتوضيح مسافة التباعد بين النوعين.
شكل 3 هـ: مسار العصب الحنجري الراجع في الزرافات. يُعوض العصب الحنجري بتعديلات تالية بالاصطفاء الطبيعي.
شكل 3 هـ: مسار العصب الحنجري الراجع في الزرافات. يُعوض العصب الحنجري بتعديلات تالية بالاصطفاء الطبيعي.


التركيبات الخلفية في الحيتان[عدل]

للحيتان أجزاء خلفية داخلية مختزلة؛ كالحوض والأقدام الخلفية (شكل 3أ).[42][43] أحيانًا تكون الجينات المسؤولة عن نمو الأطراف الطويلة سببًا في نمو ساقين صغيرتين لدى حوت حديث. في يوم 28 أكتوبر 2006، عثر على دلفين بأربع زعانف ودُرس طرفاه الخلفيان الزائدان.[44] تعتبر هذه الحيتانيات ذات الأرجل مثالًا على أثارة يمكن توقعها بالنظر إلى سلفها المشترك.

تركيب فم الحشرات[عدل]

تملك أنواع كثيرة من الحشرات أجزاء فم مشتقة من التركيبات الجنينية ذاتها، مما يشير إلى أن أجزاء الفم تلك هي تعديلات على الخصائص الأصلية لدى سلف مشترك. من هذه الأجزاء الشفة العليا، واللحى (الفكوك العلوية)، والبلعوم السفلي (اللسان أو قاع الفم)، والفكوك السفلية المساعدة، والشفة السفلى (شكل 3ب). أدى التطور إلى تضخم هذه التركيبات وتعديلها في بعض الأنواع، أو اختزالها وفقدانها في أنواع أخرى. تمكن تلك التعديلات الحشرات من الاستفادة من مواد غذائية متعددة ومختلفة.

أطراف مفصليات أخرى[عدل]

تعتبر أجزاء أفواه الحشرات وقرون استشعارها متناظرة مع أرجلها. نلاحظ تطورًا متوازيًا في بعض العنكبيات: يمكن تعديل زوج الأرجل الأمامي ليصبح متناظرًا مع قرني الاستشعار، خاصة في العقارب السوطية التي تسير على ست أرجل. تدعم هذه التطورات نظرية أن التعديلات المعقدة تبدأ عادةً بتناسخ المكونات ثم تعديل كل نسخة على حدة في اتجاه مختلف.

الطرف خماسي الأصابع[عدل]

إن نمط توزيع عظام الأطراف والمسمى الطرف خماسي الأصابع هو مثال على التركيبات المتناددة (شكل 3 ج). هذا النمط موجود في كل طوائف الفقاريات رباعية الأطراف (أي من البرمائيات وحتى الثدييات). كما يمكن تتبع أثره قديمًا في زعانف بعض الأسماك المتحجرة التي تطور منها أول البرمائيات، مثل تِكْتالِك. يوجد في الطرف عظمة واحدة دانية (عظمة العضد)، وعظمتان قاصيتان (الكعبرة والزند)، ومجموعة من عظام الرسغ (في المعصم)، وبعدها خمس عظام للمشط (عظام الكف) ثم السلاميات (عظام الأصابع). في كل رباعيات الأطراف نرى التركيب الأساسي للطرف خماسي الأصابع متطابقًا، مما يشير إلى أنها نشأت من سلف مشترك، لكن هذه التركيبات الأساسية قد عُدِّلت أثناء مسيرة التطور. أصبحت ظاهريًا تركيبات مختلفة وليست ذات علاقة ببعضها تقوم بوظائف مختلفة للتكيف مع البيئات وأنماط الحياة المتنوعة. نرى هذه الظاهرة بجلاء في الثدييات (شكل 3 ج)؛ مثلًا:

  • في السعدان استطال الطرفان الأماميان كثيرًا ليكونا يدًا قابضة تساعد في تسلق الأشجار والتأرجح بينها.
  • في الخنزير فُقد الإصبع الأول واختُزل الإصبعان الثاني والخامس. الإصبعان المتبقيان أطول وأكثر متانة من البقية ويحملان حافرًا لدعامة الجسد.
  • في الحصان تكيفت الأطراف الأمامية للدعامة والجري عن طريق الاستطالة الشديدة للإصبع الثالث الذي يحمل حافرًا.
  • في الخلد نجد طرفين أماميين قصيرين في صورة مجرفة للحفر والاختباء.
  • آكلات النمل تستخدم إصبعها الثالث المتضخم لتحطيم تلال أوكار النمل وأعشاش الأرضة.
  • في الحوت أصبح الطرفان الأماميان جدافتين (زعنفتين) لتوجيه السباحة والحفاظ على التوازن في الماء.
  • في الخفاش تحول الطرفان الأماميان إلى جناحين للطيران باستطالة شديدة لأربعة أصابع، أما الإصبع الأول الذي يشبه الخطاف فبقي حرًا للتعلق والتدلي من الأشجار.

تركيب الحوض في الديناصورات[عدل]

كما في الطرف خماسي الأصابع في الثدييات، فإن الديناصورات الأولى انقسمت إلى رتبتين مختلفتين: سحليات الحوض وطيريات الحوض. تُصنف الديناصورات في إحدى الرتبتين حسب ما يظهر في أحافيرها. في الشكل 3 د نرى أن أولى سحليات الحوض كانت تشبه أولى طيريات الحوض. نمط تركيب الحوض في كل أنواع الديناصورات هو مثال على التركيبات المتناددة. كل من رتبتي الديناصورات لها عظام حوضية مختلفة قليلًا مما يقدم دليلًا على السلف المشترك لهما. كما أن أحواض الطيور الحديثة تظهر تشابهًا مع التراكيب الحوضية في سحليات الحوض مما يشير إلى تطور الطيور من الديناصورات. يمكن مشاهدة ذلك في الشكل 3 د حيث تنقسم الطيور عن التحترتبة ثيروبودا.

العصب الحنجري الراجع في الزرافات[عدل]

العصب الحنجري الراجع هو الفرع الرابع من العصب المبهم الذي هو أحد الأعصاب القحفية. عادة ما يكون مساره طويلًا في الثدييات. يخرج العصب الحنجري الراجع ابتداءً من المخ جزءًا من العصب المبهم، ثم يمر في الرقبة حتى القلب، ويلتف حول الأبهر الظهري ثم يرجع صعودًا إلى الحنجرة من خلال الرقبة. (شكل 3 هـ)

هذا المسار ليس الأمثل حتى للإنسان، لكن في الزرافات يصبح أدنى من المستوى الأمثل بكثير. بسبب طول رقبة الزرافة فإنه يمكن أن يمتد العصب الحنجري الراجع لديها إلى 4 أمتار بالرغم من أن مساره الأمثل لا يتجاوز طوله عدة بوصات.

المسار غير المباشر لهذا العصب هو نتيجة تطور الثدييات من الأسماك التي لم تكن لها رقبة وكان عصبها قصير نسبيًا ويعصِّب فلعة خيشومية واحدة ويمر بالقرب من القوس الخيشومية. بعد ذلك أصبح الخيشوم الذي يصل إليه العصب حنجرةً، وأصبحت القوس الخيشومية الشريان الأبهر الظهري في الثدييات.[45][46]

مسار الأسهر[عدل]

مسار الأسهر من الخصية إلى القضيب.

كما في عصب الحنجرة في الزرافة فإن الأسهر (جزء من التشريح الذكري لكثير من الفقاريات ينقل الحيوانات المنوية من البربخ تحسبًا للقذف) في الإنسان يصعد الأسهر من الخصية، ويلف حول الحالب، ثم ينزل إلى الإحليل والقضيب. يشير البعض إلى أن هذا بسبب هبوط الخصيتين أثناء مدة تطور الإنسان لأسباب متعلقة بدرجة الحرارة على الأرجح. ومع هبوط الخصيتين، ازداد طول الأسهر لمواءمة الانعقافة غير المقصودة حول الحالب.[46][47]

أدلة من علم الأحياء القديمة[عدل]

حشرة عالقة في الكهرمان.

عندما تموت المتعضيات فإنها عادة ما تحلل سريعًا أو تستهلك أجسادها قمامات، مما لا يدع أي أثر دائم لوجود تلك المتعضيات. إلا أنه في بعض الأحيان تحفظ المتعضيات. تسمى بقايا متعضيات الأزمنة الجيولوجية السابقة أو آثارها المطمورة في الصخور بآليات طبيعية، تسمى مستحاثات. المستحاثات غاية في الأهمية لفهم تاريخ تطور الحياة على الأرض، فهي تقدم أدلة مباشرة على التطور ومعلومات مفصّلة حول سلف المتعضيات. علم الأحياء القديمة يعنى بدراسة الحياة السابقة اعتمادًا على سجلات الأحافير وعلاقاتها بالأزمان الجيولوجية المختلفة.

لابد من أن تُدفن آثار المتعضيات وبقاياها سريعًا حتى لا تقع التجوية أو التحلل ومن ثم يمكن حدوث التحجّر. التركيبات الهيكلية أو الأجزاء الصلبة الأخرى هي أكثر أنواع البقايا المتحجرة شيوعًا. كما توجد بعض متحجرات الآثار في صورة قوالب أو طبعات لبعض الكائنات قديمة.

بعد موت الحيوان تبدأ المواد العضوية بالتحلل تدريجيًا حتى يصبح العظم مساميًا. إذا دُفن الحيوان بعد ذلك في الطين، فإن الأملاح المعدنية تتخلل العظام وتملأ المسام تدريجيًا. تتصلب العظام وتتحجر وتُحفظ في صورة أحافير. تعرف هذه العملية بالتحجر. إذا غمرت الحيوانات الميتة الرمال التي تحملها الرياح، ثم حولته الأمطار الغزيرة أو الفيضانات إلى طين، فإن عملية دخول المعادن نفسها قد تحدث. إلى جانب التحجر، فإن أجساد الحيوانات الميتة يمكن أن تُحفظ جيدًا في الجليد، أو في راتنج الأشجار المخروطية المتجمد (الكهرمان)، أو في القطران، أو في الخث الحمضي اللاهوائي. يمكن أن تكون الأحفورة لأثر مطبوع. ومن ذلك أوراق الأشجار وآثار خطوات الأقدام، التي تتكون أحافيرها طبقة طبقة ثم تتصلب.

سجل الأحافير[عدل]

أحفورة لثلاثي الفصوص. كانت ثلاثيات الفصوص مفصليات أرجل ذات صدفة قاسية، تشبه من الحيوانات المعاصرة سرطان حدوة الحصان والعنكبوت. وقد ظهر ثلاثي الفصوص بأعداد كبيرة منذ حوالي 540 مليون سنة، وانقرض منذ 250 مليون سنة.

يمكن معرفة كيف تطورت مجموعة معينة من المتعضيات بواسطة ترتيب سجلها الأحفوري زمنيًا. يمكن تحديد هذا الترتيب لأن الأحافير توجد غالبًا في صخور رسوبية. يتكون الصخر الرسوبي من طبقات من الطمي أو الطين بعضها فوق بعض؛ ولذلك تحتوي الصخور الناتجة عن ذلك مجموعة من الطبقات الأفقية تسمى الطبقات الأرضية. كل طبقة تحتوي أحافير نموذجية للعصر المعين الذي تكونت فيه. أكثر الطبقات انخفاضًا تحتوي أقدم الصخور وأول الأحافير، بينما أعلى الطبقات تحتوي أحدث الصخور وأحافير أحدث.

يمكن أيضًا مشاهدة تتابع الحيوانات والنباتات في اكتشافات الأحافير. بعد دراسة أعداد الأحافير المختلفة ومدى تعقيدها في مستويات طبقية مختلفة، لوحظ أن الصخور الأقدم تحوي أحافير أقل، وكلها لكائنات لها تراكيب أبسط، في حين أن الصخور الأحدث فيها تنوع أكبر من الأحافير، مع زيادة متصاعدة في مستوى تعقيد تراكيبها.[48]

كان علماء الأرض قادرين على تقدير أعمار الطبقات والأحافير التي يجدونها بشكل تقريبي فقط لسنوات كثيرة. كانوا يفعلون ذلك بتقدير زمن تكون الصخر الرسوبي طبقة بطبقة مثلًا. أما اليوم، فيمكن للعلماء تحديد أعمار الأحافير بدقة أعلى مستخدمين نِسب العناصر المستقرة والمشعة في صخرة معينة. تُعرف هذه التقنية بالتأريخ الإشعاعي.

طوال السجل الأحفوري، فإن كثيرًا من الأنواع التي تظهر في مستوى طبقي أقدم تختفي في مستوى أحدث. يُفسَّر هذا بالتعبير التطوري على أنه محدد للأزمان التي نشأت فيها الأنواع أو انقرضت. تنوعت المناطق الجغرافية والأحوال الجوية على مدى تاريخ الأرض. وبما أن المتعضيات متكيفة لبيئات معينة، فأن الأحوال دائمة التغير تفضّل الأنواع التي تتكيف للبيئات الجديدة على غيرها، وذلك بواسطة آلية الاصطفاء الطبيعي.

امتداد السجل الأحفوري[عدل]

Glyptodon-1.jpg
جمع تشارلز دارون الأحافير في أمريكا الجنوبية، ووجد قطعًا من درع رأى أنه نسخة عملاقة من حراشف المدرَّع الذي يعيش بالجوار. أوضح عالم التشريح رتشرد أُوِن أن القطع كانت من جليبتودون العملاقة المنقرضة، وهي قريبة المدرّع. كان هذا أحد أنماط التوزيع التي ساعدت داورن على إنشاء نظريته.[49]
جمع تشارلز دارون الأحافير في أمريكا الجنوبية، ووجد قطعًا من درع رأى أنه نسخة عملاقة من حراشف المدرَّع الذي يعيش بالجوار. أوضح عالم التشريح رتشرد أُوِن أن القطع كانت من جليبتودون العملاقة المنقرضة، وهي قريبة المدرّع. كان هذا أحد أنماط التوزيع التي ساعدت داورن على إنشاء نظريته.[49]


فك الكلب، أحد الزواحف شبيهة الثدييات وهو سلف لكل الثدييات الحية.

بالرغم من ندرة توافر الأحوال المناسبة للتحجر، إلا أنه يُعرف ما يقارب 250 ألف نوع أحفوري.[50] عدد الأحافير يختلف كثيرًا من نوع لآخر، لكن ملايين الأحافير قد استُخرجت، مثلًا: استُخرج أكثر من ثلاثة ملايين أحفورة تعود إلى العصر الجليدي الأخير من بحيرة قطران لا بريا في لو أنجلس، الولايات المتحدة الأمريكية.[51] ما زال هنالك الكثير من الأحافير في الأرض في تشكيلات جيولوجية مختلفة معروف أنها ذات كثافة أحفورية عالية، مما يسمح بتقدير مجموع المحتوى الأحفوري في التشكيل. مثال على ذلك تشكل بوفورت في جنوب أفريقيا الغني بأحافير الفقاريات، ومنها الزواحف شبيهة الثدييات (وهي مجموعة أنواع انتقالية بين الزواحف والثدييات).[52] قُدر محتوى هذا التشكل بما يقارب 800 مليار أحفورة فقارية.[53]

قصور السجل الأحفوري[عدل]

السجل الأحفوري مصدر مهم للعلماء عند تتبع التاريخ التطوري للمتعضيات، ولكن لوجود عجز متأصل في طبيعة السجل فإنه لا توجد تدرجات دقيقة من الأشكال الانتقالية بين المجموعات المتقاربة من الأنواع. يعد هذا الافتقار إلى سلسلة متتابعة من الأحافير في السجل أحد أكبر القيود التي تحول دون تتبع سلف المجموعات الحيوية من خلال السجل الأحفوري. تطلق تسمية "الحلقة المفقودة" عادةً في إطار غير علمي على الأحافير الانتقالية التي تُظهر هيئات متوسطة بين نوعين وكانت فجوة معرفية قبل العثور عليها.

توجد فجوة بحجم يقارب مئة مليون سنة بين بداية العصر الكامبري ونهاية العصر الأردفيشي. أوائل العصر الكامبري هي الفترة التي يوجد فيها الكثير من أحافير الإسفنجيات، واللاسعات (مثل قناديل البحروشوكيات الجلد (مثل الزنبقيات الأولية، والرخويات (مثل الحلزوناتومفصليات الأرجل (مثل ثلاثيات الفصوص). قُدّر تاريخ وجود أول حيوان لديه الخصائص النموذجية للفقاريات (مدرعة أراندا) بأواخر العصر الأردفيشي. لذلك لم يعثر إلا على قليل من الأحافير المتوسطة بين اللافقاريات والفقاريات، إلا أن الأحافير المرشحة لمثل ذلك الدور تشمل حيوان تشكّل صخور برجس الطينية، والبيكايا[54] وأقرباؤه في صخور ماوتيانشان الطينية، وMyllokunmingia، وYunnanozoon، وHaikouella lanceolata،‏[55] وHaikouichthys.‏[56]

من أسباب نقص سجلات الأحافير:

  • احتمال تحجّر منعضية ما ضئيل جدًا بوجه عام.
  • احتمال تحجّر بعض الأنواع أو المجموعات أقل من ذلك بسبب أجسادها اللينة والرخوة.
  • احتمال تحجر بعض الأنواع أو المجموعات أقل من ذلك بسبب أنها تعيش (وتموت) في أحوال غير مؤاتية للتحجر.
  • الكثير من المتحجرات قد دمرت بفعل عوامل التعرية وتكتونيات الصفائح.
  • أغلب الأحافير متكسرة.
  • بعض التغيرات التطورية تحدث في تجمعات تعيش في أقصى مدى جغرافي لتحمل النوع للعوامل البيئية؛ وبما أن تلك التجمعات غالبًا ما تكون صغيرة فإن احتمالية التحجّر تقل. (انظر التوازن المتقطع)
  • كما أنه عند تغير الظروف البيئية، فإنه يرجح أن يقل كثيرًا حجم تجمع نوع ما من المتعضيات بحيث تقل احتمالية تحجر أي تغير تطوري سببته هذه الظروف البيئية الجديدة.
  • تحمل معظم الأحافير معلومات عن الهيئة الخارجية، لكنها لا توضح الكثير عن طريقة عمل المتعضية.
  • عند الاستناد إلى مدى التنوع الحيوي في الحاضر، فإن هذا يوحي بأن الأحافير المستخرجة لا تمثل سوى جزء ضئيل من العدد الكبير من أنواع المتعضيات التي كانت تعيش في الماضي.

أمثلة محددة[عدل]

تطور الحصان[عدل]

تطور الحصان، يظهر في الصورة استبناءات الأنواع المتحجرة التي استُخرجت من طبقات صخرية متتابعة. كل رسومات الأقدام هي من منظور أمامي للقدم الأمامية اليسرى. عظمة المشط الثالثة ملونة في كل الصور. الأسنان معروضة في قطع طولي.

يقدم الحصان أحد أفضل الأمثلة على التاريخ التطوري (علم الوراثة العرقي) بفضل السجل الأحفوري شبه الكامل والذي وجد في مستودعات رسوبية في أمريكا الشمالية تمتمد من أوائل عصر الإيوسين وحتى الحاضر.

تبدأ هذه السلسلة التطورية بحيوان صغير يسمى هايروكاثيريوم (أو الحصان الأولي، بالإنجليزية: Eohippus)، الذي كان يعيش في أمريكا الشمالية منذ ما يقارب 54 مليون سنة، ثم انتشر إلى أوروبا وآسيا. تظهر البقايا الأحفورية للهايراكوثيريوم أنه يختلف مع الحصان الحديث في ثلاثة وجوه مهمة: كان حيوانًا صغيرًا (بحجم الثعلب)، بنيته خفيفة ومتكيف للركض؛ كانت أطرافه قصيرة ونحيلة، وأقدامه ممتدة حتى أن الأصابع كانت عمودية تقريبًا، وله أربعة أصابع في طرفيه الأماميين وثلاثة في طرفيه الخلفيين؛ وكانت قواطعه صغيرة، وأضراسه ذات تيجان منخفضة وشرفات مدورة تغطيها المينا.

المسار المرجح لتطور الحصان من هايراكوثيريوم إلى الحصان الحديث يشمل 12 جنسًا على الأقل وعدة مئات من الالأنواع. يمكن تلخيص الاتجاهات الرئيسية المشاهدة في تطور الحصان تبعًا للظروف البيئية المتغيرة كما يلي:

  • زيادة في الحجم (من 0,4 م إلى 1,5 م)
  • استطالة الأطراف والأقدام
  • اختزال الأصابع الجانبية
  • زيادة في طول الإصبع الثالث وسمكه
  • زيادة في عرض القواطع
  • استبدال الضواحك بالأضراس
  • زيادة في طول الأسنان وارتفاع التيجان في الأضراس

تظهر النباتات المتحجرة في طبقات مختلفة أن الأرياف السبخية المشجرة التي كان يعيش فيها الهايراكوثيريوم أخذت في الجفاف تدريجيًا، وأصبح حينها البقاء يعتمد على كون الرأس في وضعية مرتفعة للتمتع بمنظر جيد للريف المحيط بالحيوان، وعلى سرعة جري عالية للفرار من المفترسات، ومن ثم الزيادة في الحجم واستبدال القدم المفرودة بالقدم ذات الحافر؛ فالأرض الجافة والصلبة تجعل القدم المنبسطة القديمة غير ضرورية للدعامة. يمكن تفسير التغيرات في الأسنان بافتراض أن النظام الغذائي قد تغير من كونه نباتات طرية إلى حشائش. اختير جنس سائد من كل فترة جيولوجية لإظهار التحور في سلالة الحصان من هيئته السلفية إلى هيئته الحديثة.

الانتقال من الأسماك إلى البرمائيات[عدل]

قبل 2004 كان علماء الأحياء القديمة قد وجدوا مستحاثات لبرمائيات لها فقرات عنقية، وآذان، وأربع أرجل، في صخور لا يتجاوز عمرها 365 مليون سنة. ولم يستطيعوا أن يجدوا في الصخور الأقدم من 385 مليون سنة سوى الأسماك التي تفتقر إلى هذه الخصائص البرمائية. تنبأت نظرية التطور بأنه بما أن البرمائيات قد تطورت من الأسماك، فلابد من وجود هيئة انتقالية في الصخور التي تعود إلى الفترة الماضية ما بين 365 و385 مليون سنة. ويجب أن يمتاز هذا النوع الانتقالي بخصائص كثيرة تشبه الأسماك احتفظ بها من 385 مليون سنة أو أكثر، ولكن في الوقت ذاته يجب أن يمتاز بخصائص برمائية كذلك. في عام 2004 عثرت رحلة استكشافية انطلقت إلى جزر في القطب الشمالي الكندي بحثًا عن هذه الأحفورة تحديدًا، عثرت في صخور عمرها 375 سنة على أحافير لتيكتاليك.[57] لكن بعد ذلك ببضعة سنوات عثر علماء في بولندا على آثار كائن رباعي الأرجل متحجرة أقدم من تيكتاليك.[58]

أدلة من التوزيع الجغرافي[عدل]

بيانات وجود الأنواع أو غيابها في القارات والجزر المختلفة (الجغرافيا الحيوية) يمكن أن تقدم أدلة على اشتراك السلف وأن تسلط الضوء على أنماط الانتواع.

التوزيع القارّي[عدل]

كل المتعضيات متكيفة لبيئاتها بدرجات متفاوتة. إذا كانت العوامل الأحيائية وغير الأحيائية في موطن ما قادرة على دعم نوع معين في منطقة جغرافية ما، فقد يفترض المرء أن النوع ذاته سيوجد في بيئة مشابهة في منطقة جغرافية مشابهة، مثلًا: أفريقيا وأمريكا الجنوبية. الأمر ليس كذلك. توزيع أنواع النباتات والحيوانات متقطع حول العالم:

يمكن ملاحظة اختلافات أكبر إن وضعنا أستراليا في الحسبان؛ فبالرغم من أنها تقع في دوائر العرض نفسها التي تقع عليها أجزاء كبيرة من أفريقيا وأمريكا الجنوبية، نجد أن الجرابيات كالكنغر والبندقوط والكوول تشكل قرابة نصف الأنواع الثديية أصلية الموطن في أستراليا.[60] يقابل هذا الغياب التام للجرابيات في أفريقيا وجزءًا صغيرًا من الحيوانات الثديية في أمريكا الجنوبية حيث يوجد الأبصوم والأبصوم الزبابي وقرد الجبل. الممثل الحي الوحيد للثدييات البدائية التي تضع البيض (أحاديات المسلك) هو خلد الماء وفصيلة النضناض. يعيش النضناض قصير الأنف بأنواعه في أستراليا، وتسمانيا، وغينيا الجديدة، وجزيرة الكنغر، أما النضناض طويل الأنف فيعيش فقط في غينيا الجديدة. يعيش خلد الماء في مياه شرق أستراليا، وأُدخل إلى تسمانيا، وجزيرة كنج، وجزيرة الكنغر. أحاديات المسلك هذه لا وجود لها في أي مكان آخر في العالم.[61] من ناحية أخرى تفتقد أستراليا إلى الكثير من مجموعات الثدييات المشيمية المنتشرة في القارات الأخرى (اللواحم، وشفعيات الأصابع، والزباب، والسنجابيات، وأرنبيات الشكل)، إلا أن بها خفافيش وفئران متوطنة. ووقد أدخل البشر أنواعًا أخرى كثيرة من المشيميات إلى أستراليا مثل الأرانب والثعالب.

من الأمثلة الأخرى توزيع الحيوانات الدب، حيث يوجد في جميع القارات باستثناء أفريقيا وأستراليا والقارة القطبية الجنوبية، والدب القطبي لا يوجد إلا في الدائرة القطبية الشمالية وما جاورها من يابسة.[62] البطريق يوجد حول القطب الجنوبي فقط بالرغم من تشابه ظروف الطقس في القطب الشمالي. عائلات الخيلانيات موزعة حول مياه الأرض بطريقة خاصة، حيث يتواجد خروف البحر في مياه غرب أفريقيا وشمال أمريكا الجنوبية والكاريبي، بينما قريبه الأطوم لا توجد إلا في مياه أوقيانوسيا شمال أستراليا وسواحل المحيط الهندي. كما أن بقرة بحر ستلر المنقرضة كانت تعيش في بحر بيرنغ.[63]

يمكن العثور على أحافير النوع الواحد في مناطق يُعرف أنها كانت متجاورة في الماضي ثم أصبحت الآن في مواقع جغرافية متباعدة بفعل الانجراف القاري. مثلًا: توجد أحافير للأنواع القديمة نفسها من البرمائيات، والمفصليات، والسراخس في أمريكا الجنوبية وأفريقيا والهند وأستراليا والقطب الجنوبي، وتعود للحقبة الأولية حين كانت هذه المناطق متحدة في كتلة يابسة واحدة تسمى غندوانا.[64] أحيانًا يمكن التعرف على السلالة الحية لهذه المتعضيات ويظهر التشابه بينها جليًا بالرغم من كونها تسكن الآن مناطق مختلفة جدًا جغرافيًا ومناخيًا.

المصادر[عدل]

  1. ^ Mount DM. (2004). Bioinformatics: Sequence and Genome Analysis (الطبعة 2nd). Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY. ISBN 0-87969-608-7. 
  2. ^ Douglas J. Futuyma (1998). Evolutionary Biology (الطبعة 3rd). Sinauer Associates Inc. صفحات 108–110. ISBN 0-87893-189-9. 
  3. ^ Haszprunar (1995). Taylor, الناشر. Origin and evolutionary radiation of the Mollusca : centenary symposium of the Malacological Society of London. Oxford: Oxford Univ. Press. ISBN 0-19-854980-6. 
  4. ^ Kozmik، Z؛ Daube، M؛ Frei، E؛ Norman، B؛ Kos، L؛ Dishaw، LJ؛ Noll، M؛ Piatigorsky، J (2003). "Role of Pax genes in eye evolution: A cnidarian PaxB gene uniting Pax2 and Pax6 functions". Developmental cell 5 (5): 773–85. doi:10.1016/S1534-5807(03)00325-3. PMID 14602077. 
  5. ^ Kozmik, Z؛ Daube، Michael؛ Frei، Erich؛ Norman، Barbara؛ Kos، Lidia؛ Dishaw، Larry J.؛ Noll، Markus؛ Piatigorsky، Joram (2003). "Role of Pax Genes in Eye Evolution A Cnidarian PaxB Gene Uniting Pax2 and Pax6 Functions". Developmental Cell 5 (5): 773–785. doi:10.1016/S1534-5807(03)00325-3. PMID 14602077. 
  6. ^ Land, M.F. and Nilsson, D.-E., Animal Eyes, Oxford University Press, Oxford (2002) ISBN 0-19-850968-5.
  7. ^ Chen FC, Li WH (2001). "Genomic Divergences between Humans and Other Hominoids and the Effective Population Size of the Common Ancestor of Humans and Chimpanzees". Am J Hum Genet. 68 (2): 444–56. doi:10.1086/318206. PMC 1235277. PMID 11170892. 
  8. ^ Cooper GM, Brudno M, Green ED, Batzoglou S, Sidow A (2003). "Quantitative Estimates of Sequence Divergence for Comparative Analyses of Mammalian Genomes". Genome Res. 13 (5): 813–20. doi:10.1101/gr.1064503. PMC 430923. PMID 12727901. 
  9. ^ The picture labeled "Human Chromosome 2 and its analogs in the apes" in the article Comparison of the Human and Great Ape Chromosomes as Evidence for Common Ancestry is literally a picture of a link in humans that links two separate chromosomes in the nonhuman apes creating a single chromosome in humans. Also, while the term originally referred to fossil evidence, this too is a trace from the past corresponding to some living beings which when alive were the physical embodiment of this link.
  10. ^ The New York Times report Still Evolving, Human Genes Tell New Story, based on A Map of Recent Positive Selection in the Human Genome, states the International HapMap Project is "providing the strongest evidence yet that humans are still evolving" and details some of that evidence.
  11. ^ Woese C, Fox G (1977). "Phylogenetic structure of the prokaryotic domain: the primary kingdoms.". Proc Natl Acad Sci USA 74 (11): 5088–90. Bibcode:1977PNAS...74.5088W. doi:10.1073/pnas.74.11.5088. PMC 432104. PMID 270744. 
  12. ^ Woese C, Kandler O, Wheelis M (1990). "Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya.". Proc Natl Acad Sci USA 87 (12): 4576–9. Bibcode:1990PNAS...87.4576W. doi:10.1073/pnas.87.12.4576. PMC 54159. PMID 2112744. اطلع عليه بتاريخ 11 Feb 2010. 
  13. ^ "29+ Evidences for Macroevolution: The Scientific Case for Common Descent". Theobald, Douglas. اطلع عليه بتاريخ 2011-03-10. 
  14. ^ "Converging Evidence for Evolution." Phylointelligence: Evolution for Everyone. Web. 26 Nov. 2010.
  15. ^ Petrov DA, Hartl DL (2000). "Pseudogene evolution and natural selection for a compact genome". J Hered. 91 (3): 221–7. doi:10.1093/jhered/91.3.221. PMID 10833048. 
  16. ^ Junk DNA: Science Videos – Science News. ScienCentral (2004-05-06). Retrieved on 2011-12-06.
  17. ^ Okamoto N, Inouye I (2005). "A secondary symbiosis in progress". Science 310 (5746): 287. doi:10.1126/science.1116125. PMID 16224014. 
  18. ^ Okamoto N, Inouye I (2006). "Hatena arenicola gen. et sp. nov., a katablepharid undergoing probable plastid acquisition". Protist 157 (4): 401–19. doi:10.1016/j.protis.2006.05.011. PMID 16891155. 
  19. ^ Human Chromosome 2 is a fusion of two ancestral chromosomes by Alec MacAndrew; accessed 18 May 2006.
  20. ^ Evidence of Common Ancestry: Human Chromosome 2 على يوتيوب(video) 2007
  21. ^ Yunis and Prakash؛ Prakash، O (1982). "The origin of man: a chromosomal pictorial legacy". Science 215 (4539): 1525–1530. doi:10.1126/science.7063861. PMID 7063861. 
  22. ^ Human and Ape Chromosomes; accessed 8 September 2007.
  23. ^ Avarello، Rosamaria؛ Pedicini، A؛ Caiulo، A؛ Zuffardi، O؛ Fraccaro، M (1992). "Evidence for an ancestral alphoid domain on the long arm of human chromosome 2". Human Genetics 89 (2): 247–9. doi:10.1007/BF00217134. PMID 1587535. 
  24. ^ أ ب Ijdo، J. W.؛ Baldini، A؛ Ward، DC؛ Reeders، ST؛ Wells، RA (1991). "Origin of human chromosome 2: an ancestral telomere-telomere fusion". Proceedings of the National Academy of Sciences 88 (20): 9051–5. doi:10.1073/pnas.88.20.9051. PMC 52649. PMID 1924367. 
  25. ^ Pallen, Mark (2009). Rough Guide to Evolution. Rough Guides. صفحات 200–206. ISBN 978-1-85828-946-5. 
  26. ^ Belshaw, R ; Pereira V; Katzourakis A; Talbot G; Paces J; Burt A; Tristem M. (2004). "Long-term reinfection of the human genome by endogenous retroviruses". Proc Natl Acad Sci USA 101 (14): 4894–99. doi:10.1073/pnas.0307800101. PMC 387345. PMID 15044706. 
  27. ^ Bonner TI et al. (1982). "Cloned endogenous retroviral sequences from human DNA". Proceedings of the National Academy of Sciences 79 (15): 4709–13. doi:10.1073/pnas.79.15.4709. PMC 346746. PMID 6181510. 
  28. ^ Van Der Kuyl، AC؛ Dekker، JT؛ Goudsmit، J (1999). "Discovery of a New Endogenous Type C Retrovirus (FcEV) in Cats: Evidence for RD-114 Being an FcEVGag-Pol/Baboon Endogenous Virus BaEVEnv Recombinant". Journal of Virology 73 (10): 7994–8002. PMC 112814. PMID 10482547. 
  29. ^ أ ب TalkOrigins Archive. "29+ Evidences for Macroevolution: Part 2". اطلع عليه بتاريخ 2006-11-08. 
  30. ^ Lambert, Katie. (2007-10-29) HowStuffWorks "How Atavisms Work". Animals.howstuffworks.com. Retrieved on 2011-12-06.
  31. ^ أ ب ت JPG image
  32. ^ Evolutionary Atavisms. Edwardtbabinski.us. Retrieved on 2011-12-06.
  33. ^ Tyson، Reid؛ Graham، John P.؛ Colahan، Patrick T.؛ Berry، Clifford R. (July 2004). "Skeletal Atavism in a Miniature Horse". Veterinary Radiology & Ultrasound 45 (4): 315–317 
  34. ^ Biello، David (2006-02-22). "Mutant Chicken Grows Alligatorlike Teeth". Scientific American. اطلع عليه بتاريخ 2009-03-08 
  35. ^ Domes، Katja؛ Norton، Roy A.؛ Maraun، Mark؛ Scheu، Stefan (2007-04-24). "Reevolution of sexuality breaks Dollo's law". PNAS 104 (17): 7139–7144. doi:10.1073/pnas.0700034104. PMC 1855408. PMID 17438282. اطلع عليه بتاريخ 2009-04-08 
  36. ^ Held، Lewis I. (2010). "The Evo-Devo Puzzle of Human Hair Patterning". Evolutionary Biology 37 (2–3): 113. doi:10.1007/s11692-010-9085-4. 
  37. ^ Douglas J. Futuyma (1998). Evolutionary Biology (الطبعة 3rd). Sinauer Associates Inc. صفحة 122. ISBN 0-87893-189-9. 
  38. ^ أ ب 29+ Evidences for Macroevolution: Part 1. Talkorigins.org. Retrieved on 2011-12-06.
  39. ^ Coyne, Jerry A. (2009). Why Evolution is True. Viking. صفحات 8–11. ISBN 978-0-670-02053-9. 
  40. ^ Charles Darwin (1859). On the Origin of Species. John Murray. صفحة 420. 
  41. ^ Natan Slifkin (2006). The Challenge of Creation... Zoo Torah. صفحات 258–9. ISBN 1-933143-15-0. 
  42. ^ Coyne, Jerry A. (2009). Why Evolution Is True. Viking. صفحات 69–70. ISBN 978-0-670-02053-9. 
  43. ^ Mary Jane West-Eberhard (2003). Developmental plasticity and evolution. Oxford University Press. صفحة 232. ISBN 0-19-512234-8. 
  44. ^ "Example 1: Living whales and dolphins found with hindlimbs". Douglas Theobald. اطلع عليه بتاريخ 2011-03-20. 
  45. ^ Mark Ridley (2004). Evolution (الطبعة 3rd). Blackwell Publishing. صفحة 282. ISBN 1405103450. 
  46. ^ أ ب Dawkins, Richard (2009). The Greatest Show on Earth: The Evidence for Evolution. Bantam Press. صفحات 364–365. ISBN 978-1-4165-9478-9. 
  47. ^ Williams, G.C. (1992). Natural selection: domains, levels, and challenges. Oxford Press. ISBN 0-19-506932-3. 
  48. ^ Coyne, Jerry A. (2009). Why Evolution is True. Viking. صفحات 26–28. ISBN 978-0-670-02053-9. 
  49. ^ "Confessions of a Darwinist". Niles Eldredge. اطلع عليه بتاريخ 2010-06-22. 
  50. ^ Laboratory 11 – Fossil Preservation, by Pamela J. W. Gore, Georgia Perimeter College
  51. ^ "Frequently Asked Questions". The Natural History Museum of Los Angeles County Foundation. اطلع عليه بتاريخ 2011-02-21. 
  52. ^ William Richard John Dean and Suzanne Jane Milton (1999). The Karoo: ecological patterns and processes. Cambridge University Press. صفحة 31. ISBN [[Special:BookSources/0-521-55430-0|0-521-55430-0 [[تصنيف:مقالات ذات أرقام كتب دولية غير صالحة]]]] تأكد من صحة |isbn= (help). 
  53. ^ Robert J. Schadewald (1982). "Six "Flood" Arguments Creationists Can't Answer". Creation Evolution Journal 3: 12–17. 
  54. ^ "من الواضح أنه من اللازم وجود أسلاف للفقاريات عاشت في العصر الكامبري، ولكن افتُرض أنها أسلاف لافقارية للفقاريات الحقيقية — أي حبليات أولية. وقد رُوج كثيرًا للبيكايا أنه أقدم أحفورة للحبليات الأولية." رتشرد دوكنز 2004 {{نسخ:مترجمة|:en:The Ancestor's Tale|حكاية السلف (كتاب)|حكاية السلف}}‏Page 289, ISBN 0-618-00583-8
  55. ^ Chen، J. Y.؛ Huang، D. Y.؛ Li، C. W. (1999). "An early Cambrian craniate-like chordate". Nature 402 (6761): 518. Bibcode:1999Natur.402..518C. doi:10.1038/990080.  edit
  56. ^ Shu، D. G.؛ Morris، S. C.؛ Han، J.؛ Zhang، Z. F.؛ Yasui، K.؛ Janvier، P.؛ Chen، L.؛ Zhang، X. L.؛ Liu، J. N.؛ Li، Y.؛ Liu، H. -Q. (Jan 2003)، "Head and backbone of the Early Cambrian vertebrate HaikouichthysNature 421 (6922): 526–529، Bibcode:2003Natur.421..526S، doi:10.1038/nature01264، ISSN 0028-0836، PMID 12556891  edit
  57. ^ "Shubin, Neil. (2008). Your Inner Fish. Pantheon. ISBN 978-0-375-42447-2. 
  58. ^ Niedzwiedzki، G.؛ Szrek، P.؛ Narkiewicz، K.؛ Narkiewicz، M.؛ Ahlberg، P. (2010). "Tetrapod trackways from the early Middle Devonian period of Poland". Nature 463 (7227): 43–48. Bibcode:2010Natur.463...43N. doi:10.1038/nature08623. PMID 20054388. 
  59. ^ Cota-Sánchez، J. Hugo & Bomfim-Patrício، Márcia C. (2010). "Seed morphology, polyploidy and the evolutionary history of the epiphytic cactus Rhipsalis baccifera (Cactaceae)". Polibotanica 29: 107–129. اطلع عليه بتاريخ 2013-02-28 
  60. ^ Menkhorst، Peter؛ Knight، Frank (2001). A Field Guide to the Mammals of Australia. Oxford University Press. صفحة 14. ISBN 0-19-550870-X. 
  61. ^ Michael Augee, Brett Gooden, and Anne Musser (2006). Echidna: Extraordinary egg-laying mammal. CSIRO Publishing. 
  62. ^ "Polar Bears/Habitat & Distribution". SeaWorld Parks & Entertainment. اطلع عليه بتاريخ 2011-02-21. 
  63. ^ "Sirenians of the World". Save the Manatee Club. اطلع عليه بتاريخ 2011-02-21. 
  64. ^ Continental Drift and Evolution. Biology.clc.uc.edu (2001-03-25). Retrieved on 2011-12-06.