أكسونومتري

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
الاسقاط الموازي
اكسونومتري (الرسم على اليسار)

اكسونومتري- 'axonometric (من اليونانية áxon =محور وقياس = métron، ان يجري قياسها من خلال المحاور) هو إحدى طرق الاظهار الهندسي التي تعاملت معها الهندسة الوصفية. وقد اُدخل من قبل العالم الفرنسي غاسبار مونج في نهاية القرن الثامن عشر. المميزة الأساسية لطريقة الأكسونومتري هي القدرة على تمثيل، في نفس المستوى p، ثلاثة وجوه للجسم K ثلاثي الأبعاد ,هذا صحيح إذا اعتبرنا K متوازي متوازي السطوح أو ان K مغلف بمتوازي السطوح.

الأكسونومتري تسمى عمودية أو مائلة, اعتمادا على اتجاه الإسقاط بالنسبة لمستوى الإسقاط p.

تاريخ[عدل]

أول مساهمات نظرية لدراسة الإظهار الاكسنومتري كانت لعالم الرياضيات الفرنسي جيرار ديساركوة (1593-1661) نحو 1630. ولكن هذه الدراسات لم تكن مفهومة كاملا من قبل معاصريه, وأعماله بقيت غير معروفة حتى أواخر القرن الثامن عشر تقريبا، عندما غاسبار مونج تعمق في هذه الدراسة. على الرغم من أن عمل مونج كان أساسي لجميع طرق التمثيل الهندسي، لكنة لم يتعمق في الإسقاط الاكسونومتري، بشكل نهائي. المساهمة الكبيرة اتت من الراهب الإنجليزي دبليو فاريش (W. Farish) فاريش (1759-1839)، بعد عامين من وفاة مونج، في 1820. وفي بيان تلي في كمبردج، وُضع الأساس النظري النهائي للاكسونومتري متساوية القياس (ايزومترك). تمثيل الاكسنومتري وجد تعريفا كاملا بعد بضع سنوات، عندما أساليب الإسقاط المتعامدة أصبحت أساليب علمية دقيقة في الوصف والتطبيق.

الجدارة العلمية لتدوين الاكسنومتري النهائي، يعود إلى العالم الألماني ول. ج. ويسباخ Weisbach ((1806 - 1871Ì، إضافة إلى أعمال بولك (Pohlke K. 1850) [1]

مصادر[عدل]

  1. ^ دليل التصميم المعماري؛ الكاتب البروفوسور: [[[ماريو دوتشي]]؛ دار النشر: اتيرزا باري 2002- (Da M.Docci, Manuale di Disegno architettonico, Laterza Bari 2002)]


طالع أيضا[عدل]

وصلات خارجية[عدل]

POV-Ray-Dodecahedron.svg هذه بذرة مقالة عن الهندسة الرياضية بحاجة للتوسيع. شارك في تحريرها.