القوى المعممة

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث

يندرج استخدام القوى المعممة في ميكانيكا لاغرانج (Lagrangian mechanics)، حيث تتناقض مهامها مع الإحداثيات المعممة. ونحصل عليها من القوى التطبيقية، Fi, i=1,..., n، المؤثرة في أي نظام يتميز بمواصفات محددة في مصطلحات الإحداثيات المعممة. في معادلة الشغل الافتراضي، كل قوة معممة هي معامل اختلاف للإحداثيات المعممة.

الشغل الافتراضي[عدل]

يمكن الحصول على القوى المعممة من حساب الشغل الافتراضي, δW, of the applied forces.[1]:265

الشغل الافتراضي للقوى, Fi, بناءً على الجزيئات Pi, i=1,..., n, التي يتم الحصول عليها من

\delta W = \sum_{i=1}^n \mathbf {F}_{i} \cdot \delta \mathbf r_i

حيث δri هي النزوح الظاهري للجزيئات Pi.

الإحداثيات المعممة[عدل]

لنفترض أن المتجهات الموضعية الجزيئات، ri، هي وظيفة الإحداثيات المعممة، qj, j=1,...,m. ثم يتم تقدير النزوح الظاهري δri عن طريق

\delta \mathbf{r}_i = \sum_{j=1}^m \frac {\partial \mathbf {r}_i} {\partial q_j} \delta q_j,\quad i=1,\ldots, n,

حيث δqj هي النزوح الظاهري للإحداثيات المعممة qj.

يصبح الشغل الافتراضي لنظام الجزيئات

\delta W = \mathbf {F}_{1} \cdot \sum_{j=1}^m \frac {\partial \mathbf {r}_1} {\partial q_j} \delta q_j +\ldots+ \mathbf {F}_{n} \cdot \sum_{j=1}^m \frac {\partial \mathbf {r}_n} {\partial q_j} \delta q_j.

جمع معاملات qj لذلك

\delta W = \sum_{i=1}^n \mathbf {F}_{i} \cdot \frac {\partial \mathbf {r}_i} {\partial q_1} \delta q_1 +\ldots+ \sum_{i=1}^n \mathbf {F}_{i} \cdot \frac {\partial \mathbf {r}_i} {\partial q_m} \delta q_m.

القوى المعممة[عدل]

يمكن صياغة الشغل الافتراضي لأي نظام جزيئات في شكل

 \delta W = Q_1\delta q_1 + \ldots + Q_m\delta q_m,

بحيث تكون

Q_j = \sum_{i=1}^n \mathbf {F}_{i} \cdot \frac {\partial \mathbf {r}_i} {\partial q_j},\quad j=1,\ldots, m,

وتسمى قوى التعميم المرتبطة بالإحداثيات المعممة qj, j=1,...,m.

معادلة السرعة[عدل]

عند تطبيق مبدأ الشغل الافتراضي نجد سهولة في كثير من الأحيان في الحصول على النزوح الظاهري من سرعات النظام. لنظام الجزيئات n، ندع سرعة كل جزيء Pi be Vi, then the virtual displacement δri يمكن صياغته أيضًا في شكل [2]

\delta \mathbf{r}_i = \sum_{j=1}^m \frac {\partial \mathbf {V}_i} {\partial \dot{q}_j} \delta q_j,\quad i=1,\ldots, n.

يعني ذلك أن القوى المعممة، Qj، يمكن تحديدها كما يلي

Q_j = \sum_{i=1}^n \mathbf {F}_{i} \cdot \frac {\partial \mathbf {V}_i} {\partial \dot{q}_j}, \quad j=1,\ldots, m.

مبدأ ألمبرت (D'Alembert's principle)[عدل]

صاغ ألمبرت ديناميكيات الجزيئات كتوازن القوى المطبقة مع أي قوة قصور ذاتي (تُسمى القوة الظاهرة)، مبدأ ألمبرت. قوة القصور الذاتي للجزيء، Pi، للكتلة mi هي

\mathbf{F}_i^*=-m_i\mathbf{A}_i,\quad i=1,\ldots, n,

بينما Ai هو تسريع للجزيء.

إذا اعتمد تكوين نظام الجزيئات على الإحداثيات المعممة qj, j=1,...,m، فمن ثم نحصل على قوة القصور الذاتي بواسطة

Q^*_j = \sum_{i=1}^n \mathbf {F}^*_{i} \cdot \frac {\partial \mathbf {V}_i} {\partial \dot{q}_j},\quad j=1,\ldots, m.

صيغة ألمبرت لمبدأ نواتج الشغل الافتراضي

 \delta W = (Q_1+Q^*_1)\delta q_1 + \ldots + (Q_m+Q^*_m)\delta q_m.

المراجع[عدل]

  1. ^ Torby، Bruce (1984). Advanced Dynamics for Engineers. United States of America: CBS College Publishing. ISBN 0-03-063366-4. 
  2. ^ T. R. Kane and D. A. Levinson, Dynamics, Theory and Applications, McGraw-Hill, NY, 2005.

انظر أيضًا[عدل]