انحدار خطي

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث

في الإحصاء، الانحدار الخطي البسيط هو أسلوب إحصائي يستخدم في قياس العلاقة بين متغيرين على هيئة علاقة دالة، يسمى أحد المتغيرات (متغير تابع) والآخر (متغير مستقل أو مُفسِر) وهو المتسبب في تغير المتغير التابع، والانحدار الخطي كأداة للقياس لا تُحدد أي المتغيرات يكون تابع أو مستقل إنما يلجأ الباحث إلى النظرية الاقتصادية في تحديد المتغيرات، مثال : تفسير ظاهرة الاستهلاك بالدخل (مع ثبات العوامل الأخرى) فالنظرية الاقتصادية تقول أن استهلاك الفرد مرتبط بالدخل. وبالتالي فالباحث يسعى إلى إعطاء شكل للعلاقة بين المتغيرات الاقتصادية على شكل دالة :

حيث أن Y المتغير التابع (الاستهلاك)، X المتغير المستقل (الدخل)، و F الدالة.

أشكال الدالة[عدل]

يمكن أن تأخذ الدالة أشكالا مختلفة قد تكون خطية، لوغارتمية، أو أسية... الخ، ويمكن تحويل أي نموذج إلى النموذج الخطي، سنركز على الانحدار الخطي البسيط في قياس العلاقة بين المتغيرات:

i=1,..,n حيث أن هي معلمات النموذج وعنصر الخطأ العشوائي، تم إضافته مراعاة للصفة الاحتمالية للنموذج ويمثل الفرق بين القيم الفعلية والقيم النظرية، وبالتالي قد تكون قيمته موجبة أو سالبة وتشترط أن تكون القيمة المتوقعة تساوي صفر.

طرق تقدير معلمات النموذج[عدل]

من أبرز الطرق المستعملة في تقدير معلمات النموذج طريقة المربعات الصغرى، وتنحصر خصائص المعلمات المقدرة في خمس افتراضات :

  • الخطية
  • انعدام القيمة المتوقعة للعنصر العشوائي.
  • تجانس تباينات الأخطاء العشوائية
  • عدم ارتباط ذاتي بين الأخطاء العشوائية.
  • عدم ارتباط ذاتي بين المتغيرات المستقلة والأخطاء العشوائية.

تتمثل طريقة المربعات الصغرى في تقدير والتي تقلل الفرق بين القيم الفعلية والنظرية أو المقدرة والتي تحقق النهاية الصغرى للكمية.

انظر أيضا[عدل]