انعكاس (رياضيات)

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
أن تابع الانعكاس على محورين متوازيين يسمى: "انتقال" (translation). انعكس الشكل البني فنتج الأخضر ثم انعكس الأخضر فأنتج الأزرق. والانتقال هو من البني إلى الأزرق.
أن تتابع الانعكاس على محورين غير متوازيين يسمى: "دوران" (rotation) حول نقطة التقاء المحورين

الانعكاس (بالإنجليزية: Reflection أو Reflexion) في الرياضيات هي دالة التي تحول شكل ما إلى صورة مرآته (المعكوسة). فمثلا، انعكاس شكل الحرف "p" بالنسبة لخط أفقي (أو مرآة) يصبح بالشكل "q". لعكس مسطح ثنائي الأبعاد، يستعمل خط كمرآة ويُسمى محور الانعكاس (axis of Reflection), بينما يلزم لانعكاس جسم ثلاثي الأبعاد مثل القطة مستوى ثنائي الأبعاد مرآة. ويعتبر الانعكاس في بعض الأحيان حالة خاصة من حالات الانقلاب (inversion).

وبالمفهوم الهندسي، لإيجاد الانعكاس لنقطة ما، يتم إسقاط خط عمودي على الخط (أو المستوى) المستعمل كمحور الانعكاس ، ثم مد الخط بشكل مستقيم في الجهة الأخرى من المحور وبنفس المسافة.

ولتحديد الانعكاس لرسم ما، يتم تحديد انعكاسات كل النقاط المؤلفة له على الناحية الأخرى من محور الانعكاس.

ملاحظات[عدل]

  • القيام بانعكاس مرتين على نفس المحور يعود بنا إلى الشكل الأصلي.
  • الانعكاس يحافظ على المسافات بين النقاط المعكوسة.
  • أن الانعكاس لا يؤثر على النقاط الموجودة على المرآة أو على المحور.
  • بعد الانعكاس في المرآة يكون أصغر ببعد واحد من الفضاء المعكوس (مثلاً إذا كانت المرآة موجودة في الفضاء الثلاثي الأبعاد فإن الصورة المعكوسة عليها تكون في الفضاء الثنائي الأبعاد وهكذا).

المعادلات[عدل]

في حالة متجه a في الفضاء الإقليدي Rn، فإن معادلة الانعكاس في المستوي الفائق من خلال المصدر المتعامد مع a هي:

\mathrm{Ref}_a(v) = v - 2\frac{v\cdot a}{a\cdot a}a

بحيث v·a هي نتيجة ضرب متجه v في a ولاحظ ان الطرف الثاني في المعادلة هو ضعف اسقاط v على a ويمكن بسهولة إثبات:

  • Refa(v) = -v إذا كانت v متوازية مع a و
  • Refa(v) = v, إذا كانت v متعامدة مع a

وبما أن الانعكاسات هذه هي ايزوميترية في فضاء إقليدي ذات مصدر محدد، فيكن تمثيلها بمصفوفة متعامدة والتي هي:

R_{ij} = \delta_{ij} - 2\frac{a_i a_j}{\|a\|^2}

بحيث δij هي دلتا كرونيكر. والمعادلة لانعكاس في فضاء أفيني v\cdot a = c هي:

\mathrm{Ref}_{a,c}(v) = v - 2\frac{v\cdot a - c}{a\cdot a}a.

انظر أيضاً[عدل]

مراجع[عدل]

وصلات خارجية[عدل]


Nuvola apps edu mathematics-ar.svg هذه بذرة مقالة عن الرياضيات تحتاج للنمو والتحسين، فساهم في إثرائها بالمشاركة في تحريرها.