تآثر كهرومغناطيسي

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث

في الفيزياء القوة الكهرومغناطيسية أو التآثر الكهرومغناطيسي (بالإنجليزية: Electromagnetism) هي ذلك المجال الكهرومغناطيسي الذي يؤثر على الجسيمات ذات الشحنة الكهربية ، مثل الإلكترون والبروتون وجسيمات ألفا و الأيونات. وهي القوة التي تربط الإلكترونات في الذرات ، كما تربط الذرات في الجزيئات.

قوى كهرومغناطيسية بين موصلين يمر فيهما تيار كهربائي.

وتؤثر القوة الكهرومغناطيسية بواسطة تبادل جسيمات لا كتلة لها وتسمى فوتونات وشبه الفوتونات . والفوتونات هي نفسها موجات كهرومغناطيسية .والقوة الكهرومغناطيسية تعمل على تجاذب الجسيمات المشحونة ذات الشحنة المضادة ، أي تجاذب الشحنة الموجبة والشحنة السالبة ، وتعمل على تنافر الجسيمات التي تحمل نفس النوع من الشحنة .

والقوة الكهرومغناطيسية هي واحدة من ضمن أربعة قوى أساسية نعرفها تتحكم في بناء العالم المادي . والثلاثة قوى الأخرى هي :

القوة الكهرومغناطيسية هي التي تربط الإلكترونات بأنوية الذرات ، وتربط الذرات بعضها البعض مكونة جزيئات وهي القوة المتحكمة في البنية البلورية . والقوة الشديدة هي التي تربط الكواركات في نواة الذرة وتربط ومكونات النواة (البروتونات) رغم شحناتها المتنافرة الموجبة . وقوة الجاذبية هي التي تكوّر الأرض وتكور الشمس وتجعل الكواكب تدور في أفلاك حول الشمس ، وهي التي تربط المجرات بعضها البعض ، و هي التي تجعلنا منجذبين إلى الأرض.

تاريخ الكهرومغناطيسية[عدل]

اعتقد في الماضي أن ظاهرة المغناطيسية وظاهرة الكهرباء قوتان منفصلتان . ولكن تلك الرؤية تغيرت عن طريق جيمس ماكسويل في عام 1873 في رسالة علمية تحت عنوان "دراسات عن الكهرباء والمغناطيسية" حيث بين أن التآثر بين شحنات موجبة وسالبة تتحكم فيه قوة واحدة . وبين "ماكسويل" أنه توجد أربعة تأثيرات لتلك التفاعلات المتبادلة ، تظهر جميعها خلال التجارب العملية:

  1. تتجاذب الشحنات الكهربائية أو تتنافر من بعضها البعض بقوة تتناسب تناسبا عكسيا مع مربع المسافة بينهما تتجاذب الشحنات المتضادة (سالبة ، وموجبة) ، وتتنافر الشحنات المتماثلة .
  2. الأقطاب المعناطيسية تتجاذب أو تتنافر بطريقة مماثلة لسلوك الشحنات الكهربائية ، ويوجد للمغناطيس نوعين من الأقطاب . يرتبط قطب شمالي دائما بقطب جنوبي .
  3. ينتج التيار الكهربائي مجالا مغناطيسيا دائريا حول السلك ، ويكون اتجاه دورانه (إما في اتجاه عقرب الساعة أو في عكس اتجاهها ) بحسب اتجاه التيار في السلك ،
  4. عندما يتحرك سلك في مجال مغناطيسي ينشأ فيه بالتأثير تيار كهربائي ، كما ينشأ تيار كهربائي عند تحرك مغناطيسي إلى سلك أو مبتعدا عنه ، ويعتمد اتجاه التيار على اتجاه حركة المغناطيس.

لاحظ هانز أورستد في 21 أبريل 1820 وهو يُعد أحد التجارب أن إبرة البوصلة تنحرف عن اتجاهها نحو الشمال عندما كان يغلق ويفتح التيار في دائرة كهربائية يُعدها . وأقنعة التامل في تلك الظاهرة بأن تيارا كهربائيا يمر في سلك يتسبب في حدوث مجالا مغناطيسيا حول السلك ، طبقا لانتشار الضوء . وتأكد من وجود علاقة بين الكهرباء والمغناطيسية .

ولم يستطع أورستد تفسير تلك الظاهرة ولم يصيغها في معادلة رياضية تصف سلوكها . ولكنه ركز البحث في تلك الظاهرة بعدها بثلاثة أشهر ، وقام بنشر رسالة علمية مبينا أن مرور تيار كهربائي يتسبب في نشأة مجالا مغناطيسيا حوله . وقد سميت وحدة اورستد للحث الكهرومغناطيسي في نظام وحدات سنتيمتر غرام ثانية cgs بإسمه تكريما لإنجازاته العلمية على هذا السبيل.

كانت نتائجئه واعزا على ابحاث مستفيضة للعلماء عن الحركية الكهربائية . واستطاع الفيزيائي الفرنسي أندريه أمبير صياغة معادلة رياضية واحدة تصف القوة المغناطيسية بين سلكين يمر فيهما تيار .

يعتبر هذا التوحيد بين المغناطيسية والكهرباء والذي شاهده فاراداي ، ثم صاغه ماكسويل بالإضافة إلى ما قام به هاينريش هيرتز من اعمال ، يعتبر من أهم الإنجازات العلمية في القرن التاسع عشر في مجال الفيزياء النظرية. وتعلقت بها تبعات هامة ، من ضمنها فهم طبيعة الضوء.

ومع اكتشاف نظرية الكم في مطلع القرن العشرين تعمق فهمنا للضوء و للموجات الكهرومغناطيسية، فنعرف اليوم أن تلك الأشعة في صورة كمومية وتنتشر ذاتيا في هيئة مجال كهرومغناطيسي ترددي . وباختلاف تردد الاهتزاز تنتج أنواع مختلفة من الأشعة الكهرومغناطيسية ، منها الموجات الراديوية ذات الترددات المنخفضة ، إلى الضوء المرئي ذو ترددات متوسطة ، إلى أشعة إكس ذات تردد عالي ، ثم إلى أشعة جاما ذات الترددات العالية جدا .

لم يكن " أورستد" العالم الوحيد الذي ربط بين الكهرباء والمغناطيسية . في عام 1802 قام العالم الإيطالي "جيان روماجنوزي" بدراسة انحراف إبرة البوصلة في وجود شحنات كهرباء ثابتة electrostatic charges. ولكن لم ينتبه العلماء إلى هذا الاكتشاف في عام 1802 . [1]

الظاهرة الكهروضوئية[عدل]

قام ألبرت أينشتاين بنشر رسالة علمية غيرت المفهوم الشائع في مطلع القرن العشرين ، وكانت الرسالة عن ظاهرة كهروضوئية (حصل من اجلها على جائزة نوبل في الفيزياء) وكان قد وصل إلى علمه ما أسماه ماكس بلانك عن الكم quanta . فأوضح أن الضوء أيضا يمكن أن يكون في صورة كمومية لما يشبه جسيم ، وسُمي شعاع الضوء بعد ذلك فوتون .

وأوضحت نظرية اينشتاين عن الظاهرة الكهروضوئية ما كان قد ظهر لماكس بلانك في عام 1900 بأنه كارثة الاشعة فوق البنفسجية . بين ماكس بلانك أن الأجسام الساخنة تشع أشعة كهرومغناطيسية في هيئة كمات ("quanta"), تنتسب إلى الطاقة الكلية التي يشعها جسم أسود . وكانت كلا من نتائج بلانك واينشتاين في تعارض مع النظرة الكلاسيكية (علوم القرن التاسع عشر) التي كانت تعتبر أن الضوء يصدر في موجات مستمرة (غير منفصلة) .

بذلك افسحت نظرية بلانك ونظرية أينشتاين المجال لابتكار ميكانيكا الكم التي صيغت في عام 1925 ، وتدخلت إلى ابتكار نظرية الكم الكهرومغناطيسيو . واكتملت النظرية الجديدة بين الاعوام 1940 - 1950 فيما يسمى كهروديناميكا كمية quantum electrodynamics ، وفي تطبيقات نظرية اختلال.

كميات ووحدات الكهرومغناطيسية[عدل]

تعتبر وحدات الكهرومغناطيسية جزءا من نظام الوحات الكهربائية ن وهي تعتمد أساسا على الخاصية المغناطيسية للتيار الكهربائي ، ووحدة التيارالكهربائي هي أمبير طبقا للنظام الدولي للوحدات. وحدات الكهرومغناطيسية هي:

  • أمبير وحدة التيار الكهربائي
  • كولوم (وحدة الشحنة الكهربائية)
  • فاراد وحدة السعة الكهربائية
  • هنري وحدة الحث
  • أوم وحدة المقاومة الكهربائية
  • تسلا كثافة الفيض المعناطيسي
  • فولط وحدة الجهد الكهربائي
  • واط وحدة القدرة
  • فيبر وحدة الفيض المغناطيسي

بالنسبة إلى نظام وحدات سنتيمتر غرام ثانية فيعرف التيار الكهربائي طبقا لقانون أمبير وفيه تكون السماحية الكهرومغناطيسية عبارة عن كمية لا بعدية (سماحية نسبية ) وتساوي 1 للفراغ . بالتالي نتخذ مربع سرعة الضوء في الفراغ في عدة معادلات تربط بين تلك الكميات في هذا النظام .

وحدات كهرومغنطيسية القياسية

عدل

رمز الكمية الكمية الواحدة رمز الواحدة الأبعاد
I التيار أمبير (وحدات قياسية) A A
Q شحنة كهربائية, كمية الكهرباء كولوم C A·s
V فرق الجهد فولت V J/C = kg·m2·s−3·A−1
R، Z، X مقاومة، معاوقة، مفاعلة بالترتيب أوم Ω V/A = kg·m2·s−3·A−2
ρ مقاومية أوم متر Ω·m kg·m3·s−3·A−2
P القدرة الكهربائية واط W V·A = kg·m2·s−3
C سعة كهربائية فاراد F C/V = kg−1·m−2·A2·s4
F^{-1} مرانة مقلوب الفاراد F−1 kg·m2·A−2·s−4
\, \varepsilon سماحية فاراد لكل متر F/m kg−1·m−3·A2·s4
Y ، G ، B مسامحة, مواصلة ، مطاوعة سيمنز S Ω−1 = kg−1·m−2·s3·A2
\,\sigma موصلية سيمنز في متر S/m kg−1·m−3·s3·A2
\,\phi تدفق مغناطيسي فيبر Wb V·s = kg·m2·s−2·A−1
B كثافة التدفق المغناطيسي أو المجال المغناطيسي تيسلا T Wb/m2 = kg·s−2·A−1
H شدة المجال المغناطيسي أمبير لكل متر A/m A·m−1
\mathfrak R ممانعة أمبير لكل فيبر A/Wb kg−1·m−2·s2·A2
L محاثة مغناطيسية هنري H Wb/A = V·s/A = kg·m2·s−2·A−2
\,\mu نفاذية هنري على متر H/m kg·m·s−2·A−2
\ \chi قابلية مغناطيسية (بلا أبعاد) χ -

انظر أيضا[عدل]

المراجع[عدل]

  1. ^ Martins، Roberto de Andrade. "Romagnosi and Volta’s Pile: Early Difficulties in the Interpretation of Voltaic Electricity". In Fabio Bevilacqua and Lucio Fregonese (eds). Nuova Voltiana: Studies on Volta and his Times. vol. 3. Università degli Studi di Pavia. صفحات 81–102. اطلع عليه بتاريخ 2010-12-02.