تدور

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
مواضيع في الحسبان
المبرهنة الأساسية
نهايات الدوال
استمرارية
مبرهنة القيمة المتوسطة

التدور (بالإنجليزية: Curl) ورمزه :(\nabla \times مؤثر تفاضلي يصف دورانية حقل متجهي ثلاثي الأبعاد. علما أن تدور متجه ما هو كذلك متجه تعبر خصائصه عن مدى دوران الحقل عند أي نقطة ويعد جيمس كلارك ماكسويل أو من قدم فكرة تدور المتجهات. ويجوز أن يعبر عن التدور برموز مختلفة لكن أكثرها شيوعا هو ما ذكر آنفا ومن رموزه \overrightarrow{\mathrm{rot}}\ \overrightarrow A\ أو \boldsymbol \nabla \wedge \boldsymbol A أو \boldsymbol \nabla \times \boldsymbol A أو \overrightarrow \nabla \wedge \overrightarrow A أو \overrightarrow \nabla \times \overrightarrow A
. في حال كان تدور الحقل المتجهي صفرا فإن الحقل المتجهي حينها يعد حقلا متجهيا لادورانيا والحقل اللادوراني هو بالضرورة حقل محافظ (أو احتفاظي) (على سبيل المثال المجال الكهربائي الساكن) كما يدعى كذلك مجال متجهي ملفي وأيضا مجال متجهي لابلاسي لإنه يحقق معادلة لابلاس.

علما أن تباعد أي تدور لأي مجال متجهي يساوي صفر.


التعريف الرياضي[عدل]

يعرف تدور المتجه عموما بإنه

(\nabla \times \mathbf{F}) \cdot \mathbf{\hat{n}} \ \overset{\underset{\mathrm{def}}{}}{=} \lim_{A \to 0} \frac{\oint_{C} \mathbf{F} \cdot d\mathbf{r}}{|A|}

أما في الإحداثيات الديكارتية ثلاثية الأبعاد فيعرض بالصيغة التالية.

\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\  \\
{\frac{\partial}{\partial x}} & {\frac{\partial}{\partial y}} & {\frac{\partial}{\partial z}} \\
 \\  F_x & F_y & F_z \end{vmatrix}

حيث ترمز i, j, و k إلى متجه الوحدة لمحاور x, y و z, على التعاقب. ويمكن تفكيها إلى:[1]

\left(\frac{\partial F_z}{\partial y}  - \frac{\partial F_y}{\partial z}\right) \mathbf{i} + \left(\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}\right) \mathbf{j} + \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right) \mathbf{k}

العمليات على المتجهات[عدل]

يدرس التفاضل الشعاعي العديد من العمليات التفاضلية معرفة في الحقل الشعاعي أو السلمي، والتي يعبر عنها غالباً على شكل معامل نبلا -nabla- (\nabla). العمليات الرئيسية الأربعة في التفاضل الشعاعي هي:

العملية الترميز الوصف المجال
تدرجGradient  \operatorname{grad}(f) = \nabla f تقيس معدل وجهة التغير في الحقل السلمي. تسقط الحقل السلمي على الحقل الشعاعي.
تدورCurl  \operatorname{curl}(\mathbf{F}) = \nabla \times \mathbf{F} يقيس قابلية الدوران حول نقطة في الحقل الشعاعي. يسقط الحقل الشعاعي على الحقل الشعاعي.
تباعدDivergence  \operatorname{div}(\mathbf{F}) = \nabla \cdot \mathbf{F} يقيس ميل المصدر أو المصرف عند نقطة معينة في الحقل الشعاعي. يسقط الحقل الشعاعي على الحقل السلمي.
لابلاسيLaplacian  \Delta f = \nabla^2 f = \nabla \cdot \nabla f مركب من عمليتي التشعب والتغير. يسقط الحقل السلمي على الحقل السلمي.

المصادر[عدل]

  1. ^ Arfken, p. 43.