خوارزمية ترتيب

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث

في المعلوماتية أو الرياضيات, خوارزمية الترتيب هي خوارزمية تمكن من تنظيم مجموعة عناصر حسب ترتيب محدد. العناصر المراد ترتيبها توجد في مجموعة مزودة بعلاقة ترتيب.

التصنيفات[عدل]

تصنيف خوارزميات الترتيب مهم جدا, لأنه يمكن من اختيار نوع الخوارزمية الأكثر مناسبة للمشكل المعالج, مع الأخذ بعين الاعتبار السلبيات الموجودة في الخوارزمية.

تعقيد الخوارزمية[عدل]

  • تعقيد الخوارزمية الزمني في الحالات الأكثر تعقيدا يمكن من تحديد الحد الأقصى لعدد العمليات التي يجب استعمالها لترتيب عناصر مجموعة مكونة من n عنصر. نستعمل لترميز هذا التعقيد لاندو: O.
  • تعقيد الخوارزمية الزمني في الحالة المتوسطة تمكن من مقارنة خوارزميات الترتيب وإعطاء فكرة عن الوقت اللازم لتنفيذ الخوارزمية.
  • تعقيد الخوارزمية المكاني قي الحالات الأكثر تعقيدا أو الحالات المتوسطة تمثل كمية الذاكرة المستعملة في خوارزمية الترتيب. وهي أيضا مرتبطة بعدد عناصر المجموعة.

في معظم الحالات T(n) = O(n^2)\,، وبالنسبة للبعض  T(n) = O(n log(n))\,.

الترتيب الذي يضم  n log(n) \,في المتوسط يعتبر جيدا.

مميزات المكان[عدل]

نقول أن خوارزمية مكانية إذا لم تستعمل سوى عدد محدد من المتغيرات وتُغير مباشرة المجموعة المراد ترتيبها. هذا يتطلب استعمال بنية للمعطيات مثلا جدول.

مميز الثبات[عدل]

تكون الخوارزمية ثابتة إذا كان يحافظ على الترتيب النسبي للكميات المتساوية بالنسبة لعلاقة الترتيب.

مثال, بالنسبة للعناصر الآتية:

(4, 1) (3, 1) (3, 7) (5, 6)

الذي نرتبها حسب الاحداثية الأولى (المفتاح) نجد حالتين, عندما يتم احترام الترتيب النسبي وعندما لا يحترم:

(3, 1) (3, 7) (4, 1) (5, 6) (ترتيب نسبي محترم)
(3, 7) (3, 1) (4, 1) (5, 6) (ترتيب نسبي متغير)

أمثلة وتقنيات الترتيب[عدل]

خوارزميات الترتيب

بالفقاعات · بالإختيار · بالإدراج · سريع · انتقائي · دمجي