دالة موبيوس

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
بحاجة لمصدر
المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها.(يوليو_2011)

دالة موبيوس (بالإنكليزية: Möbius function) الكلاسيكية هي دالة جداءية مهمة في نظرية الأعداد وفي التوافقيات. سُميت هذه الدالة هكذا نسبة لعالم الرياضيات الألماني أوغست فيرديناند موبيوس.أنشأها موبيوس عام 1832.

تعريف[عدل]

تعرف دالة موبيوس (μ(n لجميع الأعداد الصحيحة الطبيعية n و تأخذ قيمة تنتمي إلى المجموعة {1، 0، 1-}, بدلالة تعميل n إلى جداء أعداد أولية و تعرف كما يلي :

  • μ(n) = 1 : إ ذا لم يحتو n على أي مربع لعدد أولي ما أثناء تفكيكه لجداء أعداد أولية و كان عدد هؤلاء الأعداد زوجيا.
  • μ(n) = -1 : إ ذا لم يحتو n على أي مربع لعدد أولي ما أثناء تفكيكه لجداء أعداد أولية و كان عدد هؤلاء الأعداد فرديا.
  • μ(n) = 0 : إ ذا احتوى n على مربع لعدد أولي ما أثناء تفكيكه لجداء أعداد أولية, أو بتعبير آخر، إذا قبل n القسمة على مربع عدد أولي ما.

يبين الشكل التالي قيمة دالة موبيوس للأعداد الأصغر أو تساوي خمسين :

لخمسون قيمة الأولى للدالة

خصائص وتطبيقات[عدل]

خصائص[عدل]

دالة موبيوس هي دالة جداءية. أي أن (μ(ab) = μ(a) μ(b كلما كان العددان a و b أوليين فيما بينهما.

\sum_{d|n} \mu(d) = \begin{cases}1 & \mbox{ if } n=1\\ 0&\mbox{ if } n>1.\end{cases}

انظر إلى صيغة القلب لموبيوس.

دالة ميرتنز[عدل]

النظر إلى هاته الدالة يؤدي حتما إلى النظر إلى دالة ميرتنز المعرفة كما يلي:

M(n) = \sum_{k = 1}^n \mu(k)

تطبيقات[عدل]

المتسلسلات الرياضية[عدل]

متسلسلة دركليه التي تولد دالة موبيوس هي المقلوب الجدائي لدالة زيتا لريمان. إذا كان s عددا مركبا جزؤه الحقيقي أكبر قطعا من الواحد، فإن:

\sum_{n=1}^\infty \frac{\mu(n)}{n^s}=\frac{1}{\zeta(s)}.

يظهر هذا جليا من خلال جداء أويلر.

\frac{1}{\zeta(s)} = \prod_{p\in \mathbb{P}}{\left(1-\frac{1}{p^{s}}\right)}= \left(1-\frac{1}{2^{s}}\right)\left(1-\frac{1}{3^{s}}\right)\left(1-\frac{1}{5^{s}}\right)\cdots.

تعميمات[عدل]

الفيزياء[عدل]

انظر أيضا[عدل]

مراجع[عدل]

Midori Extension.svg
هذه بذرة مقالة بحاجة للتوسيع. شارك في تحريرها.