ليثيوم

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
نجمة المقالة المرشحة للاختيار
هذه المقالة مرشحة حاليا لتكون مقالة مختارة. شارك في تقييمها وفق الشروط المحددة في معايير المقالة المختارة وساهم برأيك في صفحة ترشيحها . تاريخ الترشيح: 5 يوليو 2014


بيريليومليثيومهيليوم
H

Li

Na
Element 1: هيدروجين (H), لا فلز
Element 2: هيليوم (He), غاز نبيل
Element 3: ليثيوم (Li), فلز قلوي
Element 4: بيريليوم (Be), فلز قلوي ترابي
Element 5: بورون (B), شبه فلز
Element 6: كربون (C), لا فلز
Element 7: نيتروجين (N), لا فلز
Element 8: أكسجين (O), لا فلز
Element 9: فلور (F), هالوجين
Element 10: نيون (Ne), غاز نبيل
Element 11: صوديوم (Na), فلز قلوي
Element 12: مغنسيوم (Mg), فلز قلوي ترابي
Element 13: ألومنيوم (Al), فلز ضعيف
Element 14: سليكون (Si), شبه فلز
Element 15: فسفور (P), لا فلز
Element 16: كبريت (S), لا فلز
Element 17: كلور (Cl), هالوجين
Element 18: أرغون (Ar), غاز نبيل
Element 19: بوتاسيوم (K), فلز قلوي
Element 20: كالسيوم (Ca), فلز قلوي ترابي
Element 21: سكانديوم (Sc), فلز انتقالي
Element 22: تيتانيوم (Ti), فلز انتقالي
Element 23: فاناديوم (V), فلز انتقالي
Element 24: كروم (Cr), فلز انتقالي
Element 25: منغنيز (Mn), فلز انتقالي
Element 26: حديد (Fe), فلز انتقالي
Element 27: كوبالت (Co), فلز انتقالي
Element 28: نيكل (Ni), فلز انتقالي
Element 29: نحاس (Cu), فلز انتقالي
Element 30: زنك (Zn), فلز انتقالي
Element 31: غاليوم (Ga), فلز ضعيف
Element 32: جرمانيوم (Ge), شبه فلز
Element 33: زرنيخ (As), شبه فلز
Element 34: سيلينيوم (Se), لا فلز
Element 35: بروم (Br), هالوجين
Element 36: كريبتون (Kr), غاز نبيل
Element 37: روبيديوم (Rb), فلز قلوي
Element 38: سترونشيوم (Sr), فلز قلوي ترابي
Element 39: إتريوم (Y), فلز انتقالي
Element 40: زركونيوم (Zr), فلز انتقالي
Element 41: نيوبيوم (Nb), فلز انتقالي
Element 42: موليبدنوم (Mo), فلز انتقالي
Element 43: تكنيشيوم (Tc), فلز انتقالي
Element 44: روثينيوم (Ru), فلز انتقالي
Element 45: روديوم (Rh), فلز انتقالي
Element 46: بالاديوم (Pd), فلز انتقالي
Element 47: فضة (Ag), فلز انتقالي
Element 48: كادميوم (Cd), فلز انتقالي
Element 49: إنديوم (In), فلز ضعيف
Element 50: قصدير (Sn), فلز ضعيف
Element 51: إثمد (Sb), شبه فلز
Element 52: تيلوريوم (Te), شبه فلز
Element 53: يود (I), هالوجين
Element 54: زينون (Xe), غاز نبيل
Element 55: سيزيوم (Cs), فلز قلوي
Element 56: باريوم (Ba), فلز قلوي ترابي
Element 57: لانثانوم (La), لانثانيدات
Element 58: سيريوم (Ce), لانثانيدات
Element 59: براسوديميوم (Pr), لانثانيدات
Element 60: نيوديميوم (Nd), لانثانيدات
Element 61: بروميثيوم (Pm), لانثانيدات
Element 62: ساماريوم (Sm), لانثانيدات
Element 63: يوروبيوم (Eu), لانثانيدات
Element 64: غادولينيوم (Gd), لانثانيدات
Element 65: تربيوم (Tb), لانثانيدات
Element 66: ديسبروسيوم (Dy), لانثانيدات
Element 67: هولميوم (Ho), لانثانيدات
Element 68: إربيوم (Er), لانثانيدات
Element 69: ثوليوم (Tm), لانثانيدات
Element 70: إتيربيوم (Yb), لانثانيدات
Element 71: لوتيشيوم (Lu), لانثانيدات
Element 72: هافنيوم (Hf), فلز انتقالي
Element 73: تانتالوم (Ta), فلز انتقالي
Element 74: تنجستن (W), فلز انتقالي
Element 75: رينيوم (Re), فلز انتقالي
Element 76: أوزميوم (Os), فلز انتقالي
Element 77: إريديوم (Ir), فلز انتقالي
Element 78: بلاتين (Pt), فلز انتقالي
Element 79: ذهب (Au), فلز انتقالي
Element 80: زئبق (Hg), فلز انتقالي
Element 81: ثاليوم (Tl), فلز ضعيف
Element 82: رصاص (Pb), فلز ضعيف
Element 83: بزموت (Bi), فلز ضعيف
Element 84: بولونيوم (Po), شبه فلز
Element 85: أستاتين (At), هالوجين
Element 86: رادون (Rn), غاز نبيل
Element 87: فرانسيوم (Fr), فلز قلوي
Element 88: راديوم (Ra), فلز قلوي ترابي
Element 89: أكتينيوم (Ac), أكتينيدات
Element 90: ثوريوم (Th), أكتينيدات
Element 91: بروتكتينيوم (Pa), أكتينيدات
Element 92: يورانيوم (U), أكتينيدات
Element 93: نبتونيوم (Np), أكتينيدات
Element 94: بلوتونيوم (Pu), أكتينيدات
Element 95: أمريسيوم (Am), أكتينيدات
Element 96: كوريوم (Cm), أكتينيدات
Element 97: بركيليوم (Bk), أكتينيدات
Element 98: كاليفورنيوم (Cf), أكتينيدات
Element 99: أينشتاينيوم (Es), أكتينيدات
Element 100: فرميوم (Fm), أكتينيدات
Element 101: مندليفيوم (Md), أكتينيدات
Element 102: نوبليوم (No), أكتينيدات
Element 103: لورنسيوم (Lr), أكتينيدات
Element 104: رذرفورديوم (Rf), فلز انتقالي
Element 105: دوبنيوم (Db), فلز انتقالي
Element 106: سيبورغيوم (Sg), فلز انتقالي
Element 107: بوريوم (Bh), فلز انتقالي
Element 108: هاسيوم (Hs), فلز انتقالي
Element 109: مايتنريوم (Mt), فلز انتقالي
Element 110: دارمشتاتيوم (Ds), فلز انتقالي
Element 111: رونتجينيوم (Rg), فلز انتقالي
Element 112: كوبرنيسيوم (Cn), فلز انتقالي
Element 113: أنون تريوم (Uut)
Element 114: فليروفيوم (Uuq)
Element 115: أنون بينتيوم (Uup)
Element 116: أنون هيكسيوم (Uuh)
Element 117: أنون سيبتيوم (Uus)
Element 118: أنون أوكتيوم (Uuo)
3Li
المظهر
أبيض فضي (يطفو على زيت برافيني في الصورة)


الخطوط الطيفية لليثيوم
الخصائص العامة
الاسم، العدد، الرمز ليثيوم، 3، Li
تصنيف العنصر فلز قلوي
المجموعة، الدورة، المستوى الفرعي 1، 2، s
الكتلة الذرية 6.941غ·مول−1
توزيع إلكتروني 1s2 2s1
توزيع الإلكترونات لكل غلاف تكافؤ 2، 1 (صورة)
الخصائص الفيزيائية
الطور صلب
الكثافة (عند درجة حرارة الغرفة) 0.534 غ·سم−3
كثافة السائل عند نقطة الانصهار 0.512 غ·سم−3
نقطة الانصهار 453.69 ك، 180.54 °س، 356.97 °ف
نقطة الغليان 1615 ك، 1342 °س، 2448 °ف
النقطة الحرجة (قيمة محسوبة)
3223 ك، 67 ميغاباسكال
حرارة الانصهار 3.00 كيلوجول·مول−1
حرارة التبخر 147.1 كيلوجول·مول−1
السعة الحرارية (25 °س) 24.860 جول·مول−1·كلفن−1
ضغط البخار
ض (باسكال) 1 10 100 1 كيلو 10 كيلو 100 كيلو
عند د.ح. (كلفن) 797 885 995 1144 1337 1610
الخصائص الذرية
أرقام الأكسدة +1، -1
(أكاسيده شديدة القاعدية)
الكهرسلبية 0.98 (مقياس باولنغ)
طاقات التأين الأول: 520.2 كيلوجول·مول−1
الثاني: 7298.1 كيلوجول·مول−1
الثالث: 11815.0 كيلوجول·مول−1
نصف قطر ذري 152 بيكومتر
نصف قطر تساهمي 7±128 بيكومتر
نصف قطر فان دير فالس 182 بيكومتر
خصائص أخرى
البنية البلورية مكعب مركزي الجسم
المغناطيسية مغناطيسية مسايرة
مقاومة كهربائية 92.8 نانوأوم·متر (20 °س)
الناقلية الحرارية 84.8 واط·متر−1·كلفن−1 (300 كلفن)
التمدد الحراري 46 ميكرومتر·متر−1·كلفن−1 (25 °س)
سرعة الصوت (سلك رفيع) 6000 متر/ثانية (20 °س)
معامل يونغ 4.9 غيغاباسكال
معامل القص 4.2 غيغاباسكال
معامل الحجم 11 غيغاباسكال
صلادة موس 0.6
رقم الكاس 7439-93-2
النظائر الأكثر ثباتاً
المقالة الرئيسية: نظائر الليثيوم
النظائر توافر طبيعي عمر النصف نمط الاضمحلال طاقة الاضمحلال (ميغا إلكترون فولت) ناتج الاضمحلال
6Li 7.5% 6Li هو نظير مستقر وله 3 نيوترون
7Li 92.5% 7Li هو نظير مستقر وله 4 نيوترون
6Li يمكن أن تكون له وفرة تبلغ 3.75% في
العينات الطبيعية. 7Li لذلك تصل نسبته إلى 96.25%.
ع · ن · ت

الليثيوم هو عنصر كيميائي له الرمز Li والعدد الذري 3. يقع الليثيوم في الجدول الدوري ضمن عناصر الدورة الثانية وفي المجموعة الأولى كأول الفلزات القلوية. إن الليثيوم النقي عبارة عن فلز ذو لون أبيض فضي، وهو ليّن وخفيف، حيث أنه الفلز الأقل كثافة بين العناصر الكيميائية الصلبة وذلك في الظروف القياسية من الضغط ودرجة الحرارة.

نتيجة النشاط الكيميائي الكبير لعنصر الليثيوم فإنه لا يوجد في الطبيعة بصورته الحرة، لذلك يحفظ عادة ضمن وسط من زيت معدني. عند درجة حرارة الغرفة وفي وسط جاف تماماً يبقى الليثيوم لفترة طويلة نسبياً قبل أن يتحول إلى نتريد الليثيوم نتيجة تفاعله مع نيتروجين الهواء. وفي الوسط الرطب يتشكل على سطح الليثيوم النقي طبقة رمادية من هيدروكسيد الليثيوم. كغيره من الفلزات القلوية، فإن الليثيوم الفلزي يتفاعل بعنف مع الماء.

يوجد الليثيوم بآثار قليلة على شكل أملاح في المياه المعدنية وكذلك في جسم الإنسان، مع ضرورة الإشارة إلى أنه لا ينتمي إلى فئة المغذيات الضرورية الأساسية، إذ أن ليس له أهمية حيوية. بالمقابل، فإن لبعض أملاح الليثيوم مثل كربونات الليثيوم أثر طبي وتستخدم ضمن العلاج بالليثيوم لاضطرابات عصبية نفسية مثل الهوس والاكتئاب والاضطراب ثنائي القطب. لليثيوم العديد من التطبيقات التقنية المهمة، أشهرها دخوله في صناعة بطاريات الليثيوم المختلفة ذات الاستعمال لمرة واحدة بالإضافة إلى بطارية ليثيوم-أيون القابلة للشحن.

التاريخ[عدل]

الاكتشاف وأصل التسمية[عدل]

يوهان آوغست أرفيدسون، مكتشف عنصر الليثيوم.

اكتشف معدن البيتاليت (LiAlSi4O10) عام 1800 من قبل البرازيلي جوزيه بونيفاسيو دي أندرادا وذلك في منجم في جزيرة أوتو السويدية.[1][2][3] إلا أنه لم يعرف تركيب هذا المعدن حتى عام 1817 عندما قام الكيميائي يوهان آوغست أرفيدسون باكتشاف وجود عنصر جديد في المعدن أثناء إجراء تجاربه عليه في مختبر بيرسيليوس.[4][5][6] على الرغم من أن عنصر الليثيوم يشكل مركبات مشابهة للصوديوم وللبوتاسيوم، إلا أن الكربونات والهيدروكسيد عند الليثيوم لها انحلالية أقل في الماء وهي أكثر قلوية.[7] سمّى بيرسيليوس المادة القلوية المترسبة اسم ليثيون lithion وذلك من الكلمة الإغريقية λιθoς (ليثوس) والتي تعني الحجر، وذلك للإشارة إلى المعدن الصلب، كما سمّى الفلز المكتشف ليثيوم.[8][2][6][9] أظهر أرفيندسون فيما بعد وجود نفس الفلز في معادن أخرى مثل الإسبودومين والليبيدوليت.[2]

في عام 1818، كان العالم كريستيان غميلين أول من لاحظ أن أملاح الليثيوم تعطي لون أحمر زاهي للهب.[2] رغم الاكتشافات التي تم التوصل لها، إلا أن كلاً من أرفيندسون وغميلين لم يتمكنا من عزل عنصر الليثيوم النقي من أملاحه.[2][6][10] ولم يحدث ذلك إلا عام 1821، عندما تمكن وليام توماس بريند من الحصول على الليثيوم النقي بإجراء عملية تحليل كهربائي لأكسيد الليثيوم، وهي العملية نفسها التي قام بها همفري ديفي للحصول على الفلزات القلوية الصوديوم والبوتاسيوم وذلك من أملاحها.[11][10][12][13] قام بريند أيضاً بوصف أملاح نقية لليثيوم مثل الكلوريد وقدّر بأن الليثيا (أكسيد الليثيوم) يحوي حوالي 55% من الفلز، معتبراً بذلك أن الوزن الذري لليثيوم هو حوالي 9.8 غ/مول، في حين أنه فعلياً 6.94 غ/مول.[14] بنفس الأسلوب، تمكن روبرت بنسن وأوغوستوس ماتيسن من إنتاج كميات كبيرة من الليثيوم بإجراء عملية تحليل كهربائي لكلوريد الليثيوم.[2] هذه العملية فتحت الباب للإنتاج التجاري من الليثيوم، عندما قامت الشركة الألمانية للمعادن Metallgesellschaft AG عام 1923 بإنتاج الليثيوم من التحليل الكهربائي لمزيج من كلوريد الليثيوم وكلوريد البوتاسيوم.[2][15][16]

في عام 1917، تمكّن العالم فيلهلم شلينك من اصطناع أول مركب عضوي لليثيوم وذلك من مركبات عضوية للزئبق.[17]

الإنتاج والتطبيقات[عدل]

مرّ إنتاج واستخدام الليثيوم بمراحل عدة خلال التاريخ الحديث. إن أول تطبيق لليثيوم كان استخدامه في إنتاج صابون الليثيوم من أجل تشحيم محركات الطائرات وتطبيقات مشابهة في الحرب العالمية الثانية. ما ميّز استخدام هذه الصوابين في هذه التطبيقات أن صابون الليثيوم له نقطة انصهار عالية مقارنة مع صوابين الفلزات القلوية الأخرى، كما أنها ذات تأثير أكّال أقل مقارتة مع الصوابين المعتمدة على الكالسيوم.

ازداد الطلب على إنتاج الليثيوم أثناء الحرب الباردة نتيجة سباق التسلح النووي. تستخدم نظيري الليثيوم ليثيوم-6 وليثيوم-7 في إنتاج التريتيوم عندما تتعرض للقذف من النيوترونات. كانت الولايات المتحدة الأمريكية المنتج الأول لليثيوم بين أواخر الخمسينات حتى منتصف الثمانينات من القرن العشرين. كان حوالي 75% من الإنتاج عبارة عن ليثيوم-6 على شكل هيدروكسيد الليثيوم، والذي كانت كميته تقدر بحوالي 42 ألف طن. إن هذه الكمية من ليثيوم-6 كان لها تأثير على نسبة نظائر الليثيوم في الطبيعة عند الحاجة إلى إجراء تقييس لمعرفة الوزن الذري لليثيوم في العديد من المركبات ذات التطبيق الصناعي، أو حتى في الطبيعة عند استخدام مثل هذه الأملاح في الإجراءات الكيميائية، حيث يمكن أن تحدث تلوث للمياه الجوفية.[18][19]

استخدم الليثيوم فيما سبق لتخفيض درجة انصهار الزجاج ولتحسين سلوك الانصهار لأكسيد الألومنيوم في عملية هول-هيرو.[20][21] كان هذان التطبيقان هما المسيطران على سوق الليثيوم حتى منتصف التسعينات. انخفضت أسعار الليثيوم بعد انخفاض الطلب عليه بعد توقف سباق التسلح النووي، وقيام الدول المنتجة ببيع الكميات المخزنة للسوق بأسعار مخفّضة.[19] بعد ظهور استخدام الليثيوم في صناعة البطاريات زاد الطلب عليه مجدداً، حيث كان هذا المجال هو المسيطر على السوق عام 2007.[22] بالإضافة إلى ذلك، طوّرت طرق لإنتاج الليثيوم وذلك بالاستخراج من المحاليل المركزة للأملاح، وظهرت شركات جديدة لتلبّي هذا الطلب.[23][24]

الوفرة الطبيعية[عدل]

على الأرض[عدل]

منجم سالار دو أويوني في بوليفيا الذي يستخرج منه الليثيوم

على الرغم من أن الليثيوم واسع الانتشار على الأرض، إلا أنه لا يوجد بصورته الحرة نتيجة نشاطه الكيميائي الكبير.[8] يوجد الليثيوم على شكل أملاح في مياه البحار بنسبة تركيز ثابتة تتراوح بين 0.14 إلى 0.25 جزء في المليون (ppm) (ما يعادل 25 ميكرومولار)، بحيث أن الكمية الكليّة تقدّر بحوالي 230 بليون طن.[25][26][27] يمكن أن تزيد هذه النسبة بالقرب من المنافس الحرارية المائية إلى حوالي 7 أجزاء في المليون.[26]

على الرغم من وفرته النسبية، فإن الليثيوم غالباً ما يوجد بتراكيز ضئيلة، إن كان في المحاليل الملحية المركزة أو في معادنه، مما يصعّي من مهمة الحصول عليه.[28] [29] تقدّر نسبة الليثيوم في القشرة الأرضية بحوالي 20 إلى 70 جزء في المليون وزناً.[30][31] وهو بذلك يوجد في القشرة الأرضية بنسية أقل من الزنك والنحاس والتنغستن، وبكن بنسبة أكبر من الكوبالت والقصدير والرصاص. يدخل الليثيوم في تركيب الصخور النارية، ويكون أكثر تركيزاً في الغرانيت، بالإضافة إلى صخور البيغماتيت الغرانيتية، والتي توفّر كمية معتبرة من المعادن الحاوية على الليثيوم مثل الإسبودومين والبيتاليت.[30] يحصل أيضاً على الليثيوم من الليبيدوليت،[32] والأمبليغونيت، ومؤخراً من وحل الهكتوريت.[33] عند نسبة مقدارها 20 مغ لكل كيلوغرام واحد، فإن الليثيوم يقع ترتيبه في المركز الخامس والعشرين من حيث ترتيب العناصر في القشرة الأرضية.[34]

يتوفر الليثيوم بكميات جيدة في منجم سالار دو أويوني في بوليفيا، وذلك بكميات تقدر بحوالي 5.4 مليون طن. حسب تقديرات الماسح الجيولوجي الأمريكي عام 2010 فإن تشيلي تملك أكبر احتياطي من الليثيوم يقدّر بحوالي 7.5 مليون طن.[35] تعد أستراليا والأرجنتين والصين من الدول التي تحوي كميات وفيرة من هذا الفلز.[36][37] كما تعد كندا وروسيا والولايات المتحدة الأمريكية من الدول الحاوية على كميات من خامات الليثيوم.[38] في عام 2010، جرت عمليات كشف جيولوجية في بحيرات ملحية جافة غربي أفغانستان، بالإضافة إلى موقع في ولاية غزني الأفغانية، حيث يقدّر وجود كميات معتبرة من فلز الليثيوم.[39]

في الكون[عدل]

حسب النظريات الكونية الحديثة، فإن الليثيوم بنظيريه الثابتين ليثيوم-6 و ليثيوم-7 كان أحد ثلاث عناصر تشكّلت بعد الانفجار العظيم.[40] رغم ذلك، فإن نسية الليثيوم في الكون أقل من عنصري الهيدروجين والهيليوم، وذلك مثل العناصر الخفيفة الأخرى كالبيريليوم والبورون، وذلك نتيجة انخفاض الحرارة اللازمة لإفنائه، ولعدم توفر عمليات تخليق جديدة له.[41]

وجد أن النجوم الأقدم تستهلك الليثيوم وتنقله إلى داخلها حيث تفنيه.[42] يالمقابل، فإنه في النجوم الأحدث تحدث عملية تحوّل لليثيوم إلى ذرتي هيليوم نتيجة الاصدام مع بروتون عند درجات حرارة تتجاوز 2.4 مليون درجة سلسيوس. ولكن رغم ذلك فإن الليثيوم في النجوم الأحدث له وفرة أكبر منه في النجوم الأقدم، وذلك لأسباب لا يزال البحث مستمراً عليها.[11]

يوجد الليثيوم أيضاً في الأقزام البنية، والتي هي عبارة عن نجوم هزيلة ذات حرارة أقل من أقرانها، وذلك على العكس من نجوم الأقزام الحمراء الأكثر سخونة، والتي تقوم بإفناء الليثيوم. بناء على ذلك يمكن إجراء ما يدعى اختبار الليثيوم للتمييز بين الاثنين، خاصة أن كليهما أقل حجماً من الشمس.[11][43][44] [45] وجد أيضاً أن بعض النجوم البرتقالية تحوي تراكيز عالية من الليثيوم.[11]

في الأحياء[عدل]

يوجد الليثيوم بكميات نزيرة في العديد من النباتات واللافقاريات بتراكيز تتراوح بين 69 إلى 5760 جزء في البليون، في حين أن تركيزه في الفقاريات أقل من ذلك، حيث أن التركيز فبها يتراوح بين 21 إلى 763 جزء في البليون.[26] بشكل عام، فإن الأحياء البحرية تحوي نسبة أكثر من الليثيوم مقارنة مع الأحياء على اليابسة.[46] لا يعرف للآن إن كان لليثيوم دوراً حيوياً في هذه الكائنات،[26] إلا أن الدراسات الغذائية عند الثدييات أظهرت أهميته بالنسبة للصحة، بحيث ظهرت اقتراحات بجعل الليثيوم لهذه الكائنات أحد العناصر النادرة الأساسية، وقدرّت الكمية المنصح بإعطائها بحوالي 1 مغ في اليوم.[47] يوجد الليثيوم طبيعياً في مياه الشرب وفي بعض المغذيات مثل اللحم والسمك والبيض ومشتقات الحليب. على سبيل المثال فإن كل 100 غرام لحم حيواني تحوي 100 ميكروغرام ليثيوم.[48] أظهرت دراسة في اليابان عام 2011 احتمالية وجود علاقة بين طول عمر عينة من الأشخاص مع وجود نسية طبيعية من الليثيوم في مياه الشرب.[49]

التحضير والإنتاج[عدل]

يحصل على الليثيوم بفصله من معادنه مثل إسبودومين وبيتاليت وليبيدوليت وذلك عن باقي الفلزات الأخرى الداخلة في تركيبها. كما يحصل على أملاحه من البحيرات الملحية ومن الينابيع المعدنية ومن الترسبات الملحية.

يحضّر الليثيوم من محاليله الملحية (غالباً على شكل كلوريد الليثيوم) بإجراء عملية تبخر للماء وبإضافة كربونات الصوديوم (الصودا). يوضع المزيج في أحواض وتعرّض لأشعة الشمس لرفع التركيز بحيث نحصل على راسب من كربونات الليثيوم.

\mathrm{2\ LiCl \ + Na_2CO_3 \ \longrightarrow \ Li_2CO_3\downarrow +\ 2\ NaCl }

يعد كربونات الليثيوم الشكل الصلب الشائع الذي يحصل عليه من المناجم ويعرض في السوق العالمية. للحصول على الشكل الفلزي من الليثيوم تجرى عملية تحليل كهربائي. في البداية يعالج ملح كربونات الليثيوم بحمض الهيدروكلوريك (حمض كلور الماء) حيث يتشكل محلول كلوريد الليثيوم ويتحرر غاز ثنائي أكسيد الكربون في العملية حسب المعادلة:

\mathrm{Li_2CO_3 +\ 2\ H_3O^+ +\ 2\ Cl^- \longrightarrow \ 2\ Li^+ +\ 2\ Cl^- + CO_2\uparrow +\ 3\ H_2O}

ينبغي أن تصنع المنشآت التي تجري فيها العملية من نوع خاص من الفولاذ أو من خلائط النيكل، حيث أن محاليل الكلوريد أكالة. ينتج الليثيوم الفلزّي من التحليل الكهربائي لمصهور مزيج من 55% كلوريد الليثيوم و45% كلوريد البوتاسيوم عند درجة حرارة تبلغ حوالي 450 °س.[50]

\mathrm{Li^+ + \mathrm{e}^- \ \xrightarrow[Electolysis]{450\,^{\circ}C} \ Li}

أو على الشكل التالي

\mathrm{KCl + LiCl \ \xrightarrow[Electolysis]{450\,^{\circ}C}\ K + Li + Cl_2}
إنتاج الليثيوم عام 2011، وتقديرات الاحتياطي منه معبراً عنها بالأطنان[36]
البلد الإنتاج الاحتياطي
علم الأرجنتين الأرجنتين 3,200 850,000
علم أستراليا أستراليا 9,260 970,000
علم البرازيل البرازيل 160 64,000
علم كندا كندا (2010) 480 180,000
علم تشيلي تشيلي 12,600 7,500,000
علم الصين الصين 5,200 3,500,000
علم البرتغال البرتغال 820 10,000
علم زيمبابوي زيمبابوي 470 23,000
الإجمالي العالمي 34,000 13,000,000

يتجمّع الليثيوم السائل على سطح الكهرل حيث يفصل فيما بعد، وفي هذه الحالة لا ينفصل البوتاسيوم لأن له كمون مسرى أقل في مصهور الكلوريد. بالمقابل، يمكن لآثار من الصوديوم أن تنفصل مع الليثيوم، مما يجعله أكثر فعالية كيميائية، وهذا أمر محبّذ في حال استخدام الليثيوم في الاصطناع العضوي، لكنه غير محبّذ في حال استخدام الليثيوم في صناعة البطاريات.

قدّر الاحتياطي العالمي من الليثيوم من الماسح الجيولوجي الأمريكي عام 2008 بحوالي 13 مليون طن.[36] تتوافر مناجم الليثيوم بكثرة في أمريكيا الجنوبية وذلك من البحيرات الملحية عبر جبال الأنديز، حيث تعد تشيلي البلد الأول في قائمة منتجي الليثيوم، تليها الأرجنتين. تعد بوليفيا، الواقعة على السفح الشرقي من جبال الأنديز، من الدول التي لديها احتياطي كبير من الليثيوم. في عام 2009، كانت بوليفيا تفاوض دولاً مثل اليابان وفرنسا للبدء في استخراج الليثيوم من صحراء أويوني، والتي تقدر كمية الليثيوم التي تحويها بحوالي 5.4 مليون طن.[51][52] يحصل على الليثيوم في الولايات المتحدة أيضاً من البحيرات المالحة في نيفادا،[53] ومؤخراً تم اكتشاف مواقع جديدة في وايومنغ تقدر إنتاجيتها بحوالي 228 ألف طن، في حين أن الاحتياطي قدر بحوالي 18 مليون طن.[54]

في عام 1998، كان سعر الكيلوغرام الواحد من الليثيوم حوالي 95 دولار أمريكي.[55] بعد الأزمة العالمية عام 2008، قام مزودو الليثيوم الرئيسيون مثل شركة Sociedad Química y Minera بتخفيض سعر ملح كربونات الليثيوم بمقدار 20%.[56] إن الاستهلاك العالمي من الليثيوم في ازدياد نتيجة الطلب على بطاريات الليثيوم بمعدل 25% في السنة، لذلك فإنه من المتوقع أن يقفز هذا الاستهلاك العالمي من 150 ألف طن عام 2012 إلى 300 ألف طن سنوياً عام 2020.[57]

من المصادر المحتملة لليثيوم استخدام الآبار الحرارية الأرضية، حيث أن السوائل الراشحة من جوف الأرض تحمل نسب من الليثيوم، حيث أجريت عمليات استحصال عليه في هذه المواقع.[58][59]

الخصائص الفيزيائية[عدل]

LithiumPelletsUSGOV.jpg
Limetal.JPG
حبيبات ليثيوم مغطاة بهيدروكسيد الليثيوم الأبيض (يسار)
وقطع من الليثيوم مغطاة بطبقة رقيقة من نتريد الليثيوم الأسود (يمين)


الليثيوم يطفو في الزيت

يتميز الليثيوم بأن كثافته منخفضة، إذ أنه هو الأخف وزنا من جميع العناصر الأخرى الصلبة في درجة حرارة الغرفة، حيث تصل كثافته إلى 0.534 غ/سم3[60] هذه الكثافة المنخفضة لليثيوم مقاربة لكثافة خشب الصنوير، وهي أقل بحوالي 60% من العنصر التالي من حيث ترتيب الكثافة (البوتاسيوم والذي كثافته 0.862 غ/سم3)، حتى أنها أقل من كثافة النيتروجين السائل (0.808 غ/سم3). يمكن لليثيوم أن يطفو في الزيوت الهيدروكرونية، وهو مع الصوديوم والبوتاسيوم أحد ثلاثة فلزات، والتي يمكن أن تطفو على سطح الماء. بالإضافة إلى ذلك، فإن الليثيوم طري جداً بحيث يمكن قطعه بسكين، ويكون مقطعه ذو لون أبيض فضي، والذي يتحول مباشرةً إلى اللون الرمادي نتيجة الأكسدة.[8] تبلغ نقطة انصهار الليثيوم حوالي 180°س، وهي، رغم انخفاضها بالنسبة للفلزات الصلبة، فإنها بذلك أعلى نقطة انصهار بين الفلزات القلوية.[61]

إن معامل التمدد الحراري لليثيوم هو حوالي ضعف قيمته بالنسبة للألومنيوم وحوالي أربعة أضعاف للحديد.[62] إن لليثيوم أعلى قيمة سعة حرارية نوعية لأي عنصر صلب، حيث تبلغ قيمتها 3.58 كيلوجول لكل كيلوغرام-كلفن.[53][63] يصبح لليثيوم موصلية فائقة دون 400 ميكروكلفن عند الضغط النظامي،[64] وعند ضغوط مرتفعة (أكثر من 20 غيغاباسكال) فإن الموصلية الفائقة بحصل عليها بدرجات حرارة حوالي 9 كلفن.[65] مثل باقي الفلزات فإن الليثيوم له ناقلية كهربائية جيدة، وهي تعادل 18% من ناقلية النحاس.[31]

إن الليثيوم كباقي الفلزات القلوية له بنية بلورية مكعبة مركزية الجسم، له الزمرة الفراغية m3m وثابت الشبكة البلورية له يبلغ 351 بيكومتر.[66] عند 4.2 كلفن، فإن الليثيوم لديه بنية حسب النظام البلوري الثلاثي،[67] وعند درجات حرارة أعلى من ذلك يتحول إلى نظام بلوري مكعب الوجه ومنه إلى نظام بلوري مكعب مركزي الجسم. أظهرت دراسة أنه عند ضغوط مرتفعة يمكن الحصول على عدة أشكال متآصلة من الليثيوم.[68] على الرغم من أن المغنيسيوم يتبلور في النظام البلوري السداسي فإن الليثيوم يمكن أن تحدث له بلورة مشتركة مع المغنيسيوم بحيث تحصل خليطة للفلزين.[69]

طول الرابطة في ثنائي الليثيوم.

يبدي أيون الليثيوم أعلى حرارة إماهة من بين الفلزات القلوية الأخرى (−520 كيلوجول/مول)،[70] بذلك فإن أيون الليثيوم في الماء يتميه بالكامل، ويجذب إليه جزيئات الماء. يشكل أيون الليثيوم كرتي إماهة حوله، واحدة داخلية مكونة من أربع جزيئات ماء، والتي تكون ذرات الأكسجين فيها مرتبطة بشكل قوي بأيون الليثيوم، ومن كرة إماهة خارجية، والتي تتشكل عن طريق جسور هيدروجينية بين جزيئات ماء إضافية وبين كرة الإماهة الداخلية +Li[H2O]4، بالتالي يكون نصف القطر الأيوني للأيون المميّه كبير، وذلك بشكل أكبر حتى من أيونات الفلزات القلوية الثقيلة مثل الروبيديوم والسيزيوم.

إن الليثيوم في الحالة الغازية يكون ليس فقط على شكل أحادي الذرة، إنما أيضاً على شكل ثنائي الذرة يدعى ثنائي الليثيوم Li2. تكون الرايطة المتشكلة ذات صفة مدار ذري من النمط s، والتي تكون ذات طاقة منخفضة ملائمة. يبلغ طول الرابطة في ثنائي الليثيوم 267.3 بيكومتر، وله طاقة ارتباط مقدارها 101 كيلوجول/مول.[71] يظهر الليثيوم في حالته الغازية خواص مغناطيسية حديدية وذلك تحت شروط خاصة معينة.[72]

الخصائص الكيميائية[عدل]

كبقية الفلزات القلوية فإن الليثيوم لديه إلكترون تكافؤ وحيد، والذي يمكن بسهولة التخلّي عنه والتحوّل إلى كاتيون.[8] لذلك، فإن الليثيوم نشيط كيميائياً مقارنة مع باقي العناصر الكيميائية، رغم أنه أقل الفلزات القلوية من حيث النشاط الكيميائي، بسبب قرب الإلكترون التكافؤي لليثيوم من النواة، إذ أنه كلما كبر قطر الذرة كلما سهل التخلّي عن الإلكترون التكافؤي في المدار الأخير.[8]

يتفاعل الشكل الفلزي النقي منه مع الماء بشكل ناشر للحرارة، بحيث يتحرر غاز الهيدروجين ويتشكل هيدروكسيد الليثيوم في المحلول.[8] إن لليثيوم خاصية تميّزه عن باقي الفلزات القلوية وهي تفاعله مع النيتروجين الجزيئي ليشكل نتريد الليثيوم، وذلك حتى في درجة حرارة الغرفة.

\mathrm{6\ Li \ + N_2 \ \xrightarrow{20\,^{\circ}C}\ 2 \ Li_3N }

تعود هذه الخاصية إلى ارتفاع كثافة الشحنة لأيونات +Li وبالتالي نتيجة طاقة الشبكة البلورية العالية لنتريد الليثيوم. بذلك يعد الليثيوم الفلز الوحيد الذي يتفاعل مع النيتروجين في الشروط العادية.[73][74]

لمنع تفاعل الليثيوم مع الوسط المحيط الرطب ينبغي حفظه بطبقة من الهيدروكربونات مثل الفازلين، في حين أن باقي الفلزات القلوية تحفظ في الكيروسين وفي زيت البرافين، وذلك لانخفاض كثافة الليثيوم وصعوبة غمره في السوائل الهيدروكربونية.[11] يشتعل الليثيوم النقي ويحترق عند تعرضه لأكسجين الهواء وعند التماس مع الماء أو الرطوبة.[75]

يتفاعل فلز الليثيوم مع غاز الهيدروجين عند درجات حرارة مرتفعة ليشكل هيدريد الليثيوم.[76]

تلوّن اللهب باللون الأحمر القرمزي بسبب وجود أملاح الليثيوم

يبلغ الكمون النظامي لليثيوم −3.04 فولت، وهو بذلك له أقل كمون بين عناصر الجدول الدوري.[77]

إن القطر الأيوني لأيون الليثيوم +Li وأيون المغنيسيوم 2+Mg متقاربين، لذلك فإن هناك تشابه كبير في الخواص. هذا التشابه في الخواص بين عنصرين ينتميان لمجموعتين متجاورتين في الجدول الدوري تدعى باسم العلاقة القطرية. على هذا الأساس، فإن الليثيوم مثل المغنيسيوم وعلى العكس من الصوديوم يشكّل مركبات عضوية فلزية. من الخصائص الأخرى المتشابهة بين الليثيوم والمغنيسيوم تشكيل النتريد عند التفاعل مع النيتروجين، وتشكيل الأكسيد وفوق الأكسيد عند الاحتراق في الأكسجين، بالإضافة إلى خصائص الانحلالية المتشابهة وعدم الثباتية الحرارية لأملاح الكربونات والنتريدات.[30][78]

الكشف عن الليثيوم[عدل]

بشكل عام، تعطي أملاح الليثيوم عند تعريضها للهب لوناً أحمر قرمزي، ولكن عند حرقها بالكامل فإن اللهب يصبح ذو لون فضي. تستخدم هذه الخاصة في اختبار اللهب للكشف عن الليثيوم. تقع الخطوط الطيفية الرئيسية المميزة لليثيوم عند طول موجة مقداره 670.776 و 670.791 نانومتر، في حين أن بعض الخطوط الطيفية الصغيرة تقع عند 610.3 نانومتر. تستخدم هذه البيانات لتحليل الليثيوم باستخدام القياس الضوئي.

من الصعب الكشف عن الليثيوم بشكل كمّي باستخدام طرق التحليل الكيميائي التقليدية الرطبة، حيث أن معظم أملاح الليثيوم سهلة الانحلال. إحدى الوسائل للقيام بذلك هو إجراء عملية ترسيب لملح فوسفات الليثيوم، وذلك من خلال إضافة فوسفات ثنائي الصوديوم Na2HPO4 في وسط قلوي من محلول هيدروكسيد الصوديوم إلى العينة المراد تحليلها. بإجراء عملية تسخين يترسب ملح أبيض من فوسفات الليثيوم في حال وجود أيونات +Li حسب المعادلة:

\mathrm{3 \,Li^+ + HPO_4^{2-} + OH^- \rightarrow Li_3PO_4 \downarrow + H_2O}

المركبات[عدل]

إن الليثيوم مركب نشط كيميائياً ويشكل العديد من المركبات الكيميائية مع اللا فلزات حيث يكون له دائماً حالة الأكسدة +I. لهذه المركبات غالباً صفة أيونية، ولكن توجد هنالك صفة تساهمية للرابطة في بعض مركبات الليثيوم الأخرى وذلك على العكس من باقي الفلزات القلوية. فلذلك وعلى العكس من أملاح الصوديوم أو البوتاسيوم الموافقة، فإن العديد من أملاح الليثيوم تنحل بشكل جيد في المذيبات العضوية مثل الأسيتون أو الإيثانول.

يشكّل الليثيوم الهاليدات الموافقة: فلوريد LiF وكلوريد LiCl وبروميد LiBr ويوديد الليثيوم LiI. بالإضافة إلى ذلك، يشكّل الليثيوم العديد من المركبات اللاعضوية مثل الكبريتيد (Li2S) والأكسيد الفائق (LiO2) والكربيد (Li2C2). من مركبات الليثيوم الأخرى البورات Li2B4O7 والأميد LiNH2 والكربونات Li2CO3 والنترات LiNO3. عند درجات حرارة مرتفعة يتفاعل الهيدروجين والليثيوم ليشكل الهيدريدات البسيطة مثل هيدريد الليثيوم LiH، والمعقدة مثل البورهيدريد LiBH4 وهيدريد ألومنيوم الليثيوم LiAlH4. إن صابون الليثيوم هو عبارة عن ملح الليثيوم للأحماض الدهنية وله استخدامات في التشحيم.

بالمقابل، يشكّل الليثيوم عدة مركبات فلزية عضوية تكون الرابطة فيها بين الليثيوم والكربون عبارة عن رابطة تساهمية مستقطبة بحيث يحصل فيها على كربانيون. تكون المركبات الناتجة عبارة عن كواشف كيميائية ذات صفات قاعدية ومحبة للنواة قوية. يميل أيون الليثيوم في هذه المركبات العضوية إلى التجمع على شكل عناقيد وتكتلات ذات تناظر عال، والتي هي صفة في الكاتيونات القلوية.[79] من مركبات الليثيوم العضوية المعروفة هناك ن-بوتيل الليثيوم ورابعي بوتيل الليثيوم وميثيل الليثيوم بالإضافة إلى فينيل الليثيوم. تعد أميدات الليثيوم من النمط LiNR2 طائفة أخرى من مركبات الليثيوم العضوية، يعرف منها ثنائي إيزوبروبيل أميد الليثيوم (LDA) ومضاعف (ثلاثي ميثيل سيليل) أميد الليثيوم (LHMDS).

النظائر[عدل]

يتوافر الليثيوم طبيعياً على شكل نظيرين مستقرين وهما ليثيوم-6 6Li وليثيوم-7 7Li، علماً أن النظير ليثيوم-7 هو الأكثر من الوفرة الطبيعية (92.5%).[8][11][80] إن كلا النظيرين الطبيعيين لديهما طاقة ارتباط نووية منخفضة لكل نوية مقارنة مع العنصرين المجاورين الأخف والأثقل، الهيدروجين والبيريليوم، مما يعني أن الليثيوم هو الوحيد من بين العناصر الخفيفة المستقرة الذي يمكن أن يعطي طاقة صافية نتيجة الاندماج النووي.

هنالك سبعة نظائر مشعة لليثيوم، أكثرها ثباتاً هو النظير ليثيوم-8 8Li، والذي له عمر نصف مقداره 838 ميلي ثانية وليثيوم-9 9Li بعمر نصف 178 ميلي ثانية. إن باقي النظائر المشعة لها أعمار نصف أقل من 8.6 ميلي ثانية، أقلها هو النظير ليثيوم-4 4Li والذي عمر النصف له يبلغ 7.6 × 10−23 ثانية.[81]

يعد النظير ليثيوم-7 7Li إحدى النويدات الابتدائية التي تشكّلت في تخليق الانفجار العظيم النووي. تنتج كميات صغيرة من النظيرين ليثيوم-6 وليثيوم-7 في النجوم، لكنها تستهلك في عملية تدعى احتراق الليثيوم فور إنتاجها.[82] تنتج كميات صغيرة أخرى من النظيرين ليثيوم-6 وليثيوم-7 من أثر الرياح الشمسية والأشعة الكونية على العناصر الأثقل، ومن الاضمحلال الإشعاعي لنوى نظيري البيريليوم بيريليوم-7 7Be وبيريليوم-10 10Be.[83] ينتج النظير ليثيوم-7 7Li أيضاً في النجوم الكربونية.[84]

يتجزأ نظيري الليثيوم الطبيعيين تدريجياً من خلال عدة عمليات طبيعية،[85] من ضمنها تشكل المعادن (ترسيب كيميائي) والاستقلاب والتبادل الأيوني. تحل أيونات الليثيوم محل أيونات المغنيسيوم والحديد في معادن الغضار التي لها بنية ثمانية السطوح، حيث تفضّل نوى ليثيوم-6 6Li على ليثيوم-7 7Li، مما يؤدي إلى تخصيب النظير الأخف في هذه المعادن وفي االصخور التي تحويها.

كان إنتاج الأسلحة النووية أحد المصادر الرئيسية لعملية تجزئة النظائر الاصطناعية، حيث كان يحتفظ بالنظير الأخف ليثيوم-6 لتطبيقات صناعية وعسكرية إلى حد أثّر على نسبة التوزع الطبيعية بين النظيرين 6Li إلى 7Li. أدت هذه الظاهرة إلى حدوث عدم يقين في تقييس الوزن الذري لليثيوم، حيث أن قيمة الوزن الذري تعتمد على التوزع الطبيعي للنظائر في مصادر الليثيوم المعدنية المتوفرة تجارياً.[18]

ينتج نظير الليثيوم 7Li يكميات صغيرة في المحطات النووية من تفاعل النظير بورون-10 10B مع النيوترونات [86] حسب التفاعل النووي:

\mathrm{\,^{10} _{\ 5}B + n \rightarrow \,^7 _3Li + \,^4 _2He + \gamma}

إن النظير ليثيوم-7 عيارة عن بوزون،[87] في حين أن النظير ليثيوم-6 عبارة عن فرميون. جرى مؤخراً التوصل إلى تحضير جزيئات من النظير ليثيوم-6 في حالة الميوعة الفائقة.[88]

يمكن فصل نظائر الليثيوم عن بعضها باستخدام تقنية فصل النظائر بالليزر للبخار الذري.[89]

الاستخدامات[عدل]

تقديرات مجالات استخدام الليثيوم عام 2011.[90]
  الزجاج والخزف (29%)
  صناعة البطاريات (27%)
  شحوم التزليق (12%)
  السباكة المستمرة (5%)
  معالجة الهواء (4%)
  صناعة البوليميرات (3%)
  إنتاج الألومنيوم (2%)
  إنتاج الأدوية (2%)
  استخدامات أخرى (16%)

الزجاج والخزف[عدل]

يستخدم أكسيد الليثيوم بشكل واسع في مجال التعدين كمادة دافقة من أجل معالجة السيليكا، حيث تعمل على تخفيض درجة انصهار ولزوجة المواد الداخلة في العملية، كما تؤدي إلى تزجيج الخزف بخصائص فيزيائية محسّنة، من ضمنها انخفاض قيمة معامل التمدد الحراري. يعد هذا التطبيق من أكبر استخدامات مركبات الليثيوم.[90] يستخدم مركب كربونات الليثيوم كمادة أولية لهذا التطبيق، حيث أنه يعطي أكسيد الليثيوم إبّان التسخين.[91]

الإلكترونيات[عدل]

بطارية الليثيوم

في مجال الإلكترونيات جرى مؤخراً استخدام الليثيوم بشكل كبير في صناعة البطاريات وذلك إما بدخوله في تركيب المحاليل الكهرلية أو في المساري، وذلك لكون قيمة كمون المسرى ونسبة الطاقة إلى الوزن بالنسبة لليثيوم مرتفعة. على سبيل المثال، فإن بطارية ليثيوم-أيون يمكن أن تولّد حوالي 3 فولت لكل خلية، مقابل 2.1 فولت لبطارية الرصاص أو 1.5 فولت لبطارية زنك-كربون. إن بطارية ليثيوم-أيون هي بطاريات قابلة لإعادة الشحن وذات كثافة طاقة عالية، في حين أن بطارية الليثيوم بشكل عام هي بطاريات تستخدم لمرة واحدة يكون فيها الليثيوم أو أحد مركباته كمصعد.[92][93] من بطاريات الليثيوم التي يمكن إعادة شحنها بطارية ليثيوم بوليمر وبطارية فوسفات حديد-ليثيوم.

شحوم التزليق[عدل]

من الاستعمالات التي يدخل الليثيوم فيها هو استخدامه في تركيب شحوم التزليق. إن هيدروكسيد الليثيوم عبارة عن قاعدة قوية، عندما تسخّن مع دهن يحدث تفاعل تصبّن ونحصل على صابون الليثيوم. لهذا الصابون خاصيّة تثخين الزيوت، ولذلك يستخدم في تصنيع شحوم التزليق.[53][94][95]

التعدين[عدل]

يستخدم الليثيوم في مجال التعدين كمادة دافقة من أجل اللحام العادي وبالقصدير. كما يدخل في صناعة الخزف والمينا المزجج والزجاج. إن سبائك فلز الليثيوم مع الألومنيوم والكادميوم والنحاس والمنغنيز تستخدم في صناعة أجزاء الطائرات.[96]

العلاج الطبي[عدل]

يعد العلاج بالليثيوم أحد الوسائل لمعالجة مرض الاضطراب ثنائي القطب.[97] كما أن أملاح الليثيوم مثل كربونات الليثيوم تستخدم من أجل علاج الاضطراب الفصامي العاطفي والاضطراب الاكتئابي، حيث أن أيون الليثيوم +Li هو القسم الفعّال في هذه الأملاح.[97] تجدر الإشارة أنه على النساء الحوامل تجنب استخدام هذه الأملاح في العلاج إذ وجد لها علاقة في حدوث تشوهات قلبية للجنين.[98]

تجري الأبحاث حول استخدام الليثيوم كأحد الوسائل لعلاج الصداع العنقودي.[99]

تطبيقات نووية[عدل]

يستخدم النظير ليثيوم-6 كمصدر لإنتاج التريتيوم وكمادة من أجل اصطياد النيوترون في الاندماج النووي. يحوي الليثيوم الطبيعي على 7.5% من النظير ليثيوم-6، والذي أنتجت كميات كبيرة منه باستخدام تقنية فصل النظائر من أجل الاستخدام في صناعة الأسلحة النووية.[100] بالمقابل، فإن النظير ليثيوم-7 له أهمية لاستخدامه كمادة تبريد في المفاعلات النووية.[101]

استخدم ديوتيريد الليثيوم كوقود في اختبار القنبلة الهيدروجية الأمريكية والتي رمزت باسم Castle Bravo.

استخدم دويتيريد الليثيوم (LiD، وهو مركب يحل فيه الديوتيريوم مكان الهيدروحين في هيدريد الليثيوم) كوقود في النسخ الأولى من القنبلة الهيدروجينية. عند قذف الليثيوم بالنيوترونات فإن كل من النظيرين 6Li و 7Li ينتجان التريتيوم، والذي يتحد مع الديوتيريوم في تفاعل اندماج نووي. لا يزال الليثيوم-6 له تطبيقات في مجال الأسلحة النووية.[102]

يدرس مستقبلاً إمكانية استخدام الليثيوم لإنتاج التريتيوم من أجل توليد الطاقة بالاندماج وذلك في مفاعلات الاندماج بالحصر المغناطيسي. ينتج التريتيوم من تفاعل النيوترونات الموجودة في البلازما مع غطاء المفاعل الحاوي على الليثيوم حسب التفاعل:

\mathrm{\,^6 _3Li + n \rightarrow \,^4 _2He + \,^3 _1T}

كما يستخدم الليثيوم كمصدر لجسيمات ألفا، وذلك من قذف نوى النظير ليثيوم-7 7Li بالبروتونات المسرّعة، حيث يتشكل بيريليوم-8 8Be والذي بخضع بدوره إلى تفاعل انشطار ليعطي جسيمتي ألفا. كان هذا التفاعل من أوائل التفاعلات النووية المحضرة اصطناعياً، والتي جرى تحضيرها لأول مرة عام 1932 من قبل جون كوكروفت وإيرنست والتون.[103][104]

يدخل مركب فلوريد الليثيوم عندما يخصّب بالنظير ليثيوم-7 في تركيب المزيج الفلوريدي الملحي LiF-BeF2 وذلك مع فلوريد البيريليوم، والمستخدم في مفاعلات الملح المنصهر. يعود اختيار فلوريد الليثيوم إلى الثباتية العالية للمركب، ولكون المزيج LiF-BeF2 ذو نقطة انصهار منخفضة. بالإضافة إلى ذلك، فإن كل من 7Li و Be و F تعد من النويدات التي لها مقطع نيوتروني منخفض بحيث أنها لا تؤثر على تفاعل الانشطار داخل المفاعل.[105]

تطبيقات كيميائية وصناعية مختلفة[عدل]

في صناعة الألعاب النارية[عدل]

نظراً للون القرمزي الذي يمنح الليثيوم للهب عند احتراقه، فإن مركبات الليثيوم تستخدم في صناعة الألعاب النارية والمواد المتوهجة.[53][106][107]

معالجة الهواء[عدل]

إن كلوريد الليثيوم وبروميد الليثيوم عبارة عن مركبات شرهة للماء تسحب الماء من الوسط المحيط حولها، لذلك تستخدم كمجففات للتيارات الغازية.[53] تستخدم أملاح هيدروكسيد الليثيوم وفوق أكسيد الليثيوم في الأماكن المغلقة مثل المركبة الفضائية والغواصات من أجل إزالة غاز ثنائي أكسيد الكربون ولتتنقية الهواء. يمتص هيدروكسيد الليثيوم غاز CO2 من الهواء حيث تتشكل الكربونات. لا يقوم فوق أكسيد الليثيوم بامتصاص غاز ثنائي أكسيد الكربون فحسب، ولكنه يحرر غاز الأكسجين [108][109] حسب التفاعل:

\mathrm{ 2\ Li_2O_2 + 2\ CO_2 \longrightarrow 2\ Li_2CO_3 + O_2 }

تستخدم أملاح الليثيوم المذكورة بالإضافة إلى فوق كلورات الليثيوم في تركيب مولّدات الأكسجين التي تزوّد الغواصات بالأكسجين.[110]

البصريات[عدل]

إن فلوريد الليثيوم، والذي يحضّر صناعياً على شكل بلورات، عبارة عن مادة شفافة صافية والتي تستخدم في صناعة المواد البصرية كالعدسات في أجهزة الأشعة تحت الحمراء وفوق البنفسجية. تتميز هذه المادة بأن قرينة الانكسار لها منخفضة، وأن لها أبعد مدى انتقال في مجال الأشعة فوق البنفسجية.[111] يدخل فلوريد الليثيوم أيضاً في تركيب عدسات المقاريب.[53][112]

يستخدم مسحوق فلوريد الليثيوم الناعم في مقياس الجرعة الحراري الضوئي (TLD)، حيث أنه تعرّض مادة للإشعاع تتراكم للعيوب البلورية، وعندما تسخّن البلورة فإن هذه العيوب تحل عن طريق إطلاق إشعاع ذو لون مزرق تكون شدته متناسبة مع جرعة الطاقة الممتصة، مما يمكّن من تعيينها كمّياً.[113]

إن الصفات اللاخطية العالية لمركب نيوبات الليثيوم تجعله مستخدماً في مجال البصريات اللاخطية، وذلك على شكل متذبذب بلوري في الهواتف المحمولة وفي المضمنات البصرية.

الكيمياء العضوية والبوليميرات[عدل]

مركب ن-بوتيل الليثيوم، أحد مركبات الليثيوم العضوية.

إن مركبات الليثيوم العضوية، والتي تحضر من تفاعل فلز الليثيوم مع هاليدات الألكيل،[114] مستخدمة بكثرة في مجال صناعة البوليميرات وفي اصطناع المركيات العضوية المعقدة. في صناعة البوليميرات تستخدم مركبات ألكيل الليثيوم كحفازات وكبادئات جذرية.[115] كما تستخدم في تفاعلات البلمرة بالإضافة الأنيونية للأوليفينات اليسيطة غير الحاوية على مجموعات وظيفية.[116][117][118]

في مجال اصطناع الكيمياويات المعقدة تستخدم مركبات الليثيوم العضوية كمركبات قاعدية قوية وككواشف من أجل تحضير روابط كربون-كربون.

تطبيقات عسكرية[عدل]

يستخدم فلز الليثيوم ومركبات الهيدريد المعقدة مثل هيدريد ألومنيوم الليثيوم [Li[AlH4 كمواد ذات طاقة عالية تضاف إلى وقود الصواريخ.[11] كما يمكن لهيدريد الومنيوم الليثيوم أن يكون كوقود صلب.[119]

إن طربيد مارك-50 يعتمد على نظام الدفع بالطاقة الكيميائية المخزنة (SCEPS)، بحيث يوجد خزان صغير من سداسي فلوريد الكبريت والذي يرش على قطع من الليثيوم الصلب. إن التفاعل الناتج يولّد حرارة تنتج بخار والذي يدفع الطربيد وذلك في دورة رانكن مغلقة.[120]

احتياطات الأمان[عدل]

إن استنشاق غبار الليثيوم أو مركباته (والتي غالباً ما تكون قلوية) يسبب تهييج في الأنف والحنجرة، وعند التعرض لتراكيز مرتفعة يمكن أن يؤدي ذلك إلى تشكل سائل في الرئة والذي يمكن أن ينتهي بحدوث وذمة الرئة. يجب الانتياه إلى عدم تعرض الجلد إلى الليثيوم الفلزي حيث أنه يشكل هيدروكسيد الليثيوم المخرّش عند التعرض للرطوبة، لذلك ينبغي حفظه في وسط من مادة غير فعالة مثل النافثا.[121]

عند درجات حرارة مرتفعة تتجاوز 190 °س فإن الليثيوم الفلزي يشكل الأكسيد عند التماس مع الهواء. في وسط من الأكسجين فإن الليثيوم يشتعل تلقائياً بدءاً من 100 °س. في وسط من النيتروجين يتفاعل الليثيوم أولاً عند درجات حرارة مرتفعة ليشكل النتريد. عند التماس مع مواد حاوية على الأكسجين أو الهالوجين فإن الليثيوم يمكن أن يتفاعل بشكل انفجاري.

في حال حدوث حرائق فإن الليثيوم يتفاعل مع مطفئات الحريق التقليدية مثل الماء أو ثنائي أكسيد الكربون أو النييتروجين وذلك بشكل ناشر للحرارة، لذلك ينبغي إطفاء حرائق الليثيوم باستخدام غازات خاملة مثل الأرغون أو بعض وسائل مكافحة حرائق الفلزات مثل الرمل أو الملح.

اقرأ أيضاً[عدل]

المراجع[عدل]

  1. ^ "Petalite Mineral Information". Mindat.org. اطلع عليه بتاريخ 10 August 2009. 
  2. ^ أ ب ت ث ج ح خ "Lithium:Historical information". اطلع عليه بتاريخ 10 August 2009. 
  3. ^ Weeks، Mary (2003). Discovery of the Elements. Whitefish, Montana, United States: Kessinger Publishing. صفحة 124. ISBN 0-7661-3872-0. اطلع عليه بتاريخ 10 August 2009. 
  4. ^ "Johan August Arfwedson". Periodic Table Live!. تمت أرشفته من الأصل على 7 October 2010. اطلع عليه بتاريخ 10 August 2009. 
  5. ^ "Johan Arfwedson". تمت أرشفته من الأصل على 5 June 2008. اطلع عليه بتاريخ 10 August 2009. 
  6. ^ أ ب ت van der Krogt، Peter. "Lithium". Elementymology & Elements Multidict. اطلع عليه بتاريخ 5 October 2010. 
  7. ^ Clark، Jim (2005). "Compounds of the Group 1 Elements". اطلع عليه بتاريخ 10 August 2009. 
  8. ^ أ ب ت ث ج ح خ Krebs، Robert E. (2006). The History and Use of Our Earth's Chemical Elements: A Reference Guide. Westport, Conn.: Greenwood Press. ISBN 0-313-33438-2. 
  9. ^ N. Figurowski: Die Entdeckung der chemischen Elemente und der Ursprung ihrer Namen. Aulis-Verlag Deubner, Köln 1981, ISBN 3-7614-0561-8, S. 135.
  10. ^ أ ب Enghag, Per (2004). Encyclopedia of the Elements: Technical Data – History –Processing – Applications. Wiley. ISBN 978-3-527-30666-4. 
  11. ^ أ ب ت ث ج ح خ Emsley، John (2001). Nature's Building Blocks. Oxford: Oxford University Press. ISBN 0-19-850341-5. 
  12. ^ Various authors (1818). "The Quarterly journal of science and the arts" (PDF). The Quarterly Journal of Science and the Arts (Royal Institution of Great Britain) 5: 338. اطلع عليه بتاريخ 5 October 2010. 
  13. ^ "Timeline science and engineering". DiracDelta Science & Engineering Encyclopedia. اطلع عليه بتاريخ 18 September 2008. 
  14. ^ Brande، William Thomas؛ MacNeven، William James (1821). A manual of chemistry. Long. صفحة 191. اطلع عليه بتاريخ 8 October 2010. 
  15. ^ Green، Thomas (11 June 2006). "Analysis of the Element Lithium". echeat. 
  16. ^ Garrett، Donald E. Handbook of Lithium and Natural Calcium Chloride. صفحة 99. ISBN 9780080472904. 
  17. ^ C. Elschenbroich: Organometallchemie. 5. Auflage. Teubner, Leipzig 2005, S. 16.
  18. ^ أ ب Coplen، T.B.؛ Bohlke، J.K.؛ De Bievre، P.؛ Ding، T.؛ Holden، N.E.؛ Hopple، J.A.؛ Krouse، H.R.؛ Lamberty، A.؛ Peiser، H.S. et al. (2002). "Isotope-abundance variations of selected elements (IUPAC Technical Report)". Pure and Applied Chemistry 74 (10): 1987. doi:10.1351/pac200274101987. 
  19. ^ أ ب Ober، Joyce A. (1994). "Commodity Report 1994: Lithium". United States Geological Survey. اطلع عليه بتاريخ 3 November 2010. 
  20. ^ Deberitz، Jürgen؛ Boche، Gernot (2003). "Lithium und seine Verbindungen – Industrielle, medizinische und wissenschaftliche Bedeutung". Chemie in unserer Zeit 37 (4): 258. doi:10.1002/ciuz.200300264. 
  21. ^ Bauer، Richard (1985). "Lithium – wie es nicht im Lehrbuch steht". Chemie in unserer Zeit 19 (5): 167. doi:10.1002/ciuz.19850190505. 
  22. ^ Ober، Joyce A. (1994). "Minerals Yearbook 2007 : Lithium". United States Geological Survey. اطلع عليه بتاريخ 3 November 2010. 
  23. ^ Kogel، Jessica Elzea (2006). Industrial minerals & rocks: commodities, markets, and uses. Littleton, Colo.: Society for Mining, Metallurgy, and Exploration. صفحة 599. ISBN 978-0-87335-233-8. 
  24. ^ McKetta, John J. Encyclopedia of Chemical Processing and Design: Volume 28 – Lactic Acid to Magnesium Supply-Demand Relationships. M. Dekker. ISBN 978-0-8247-2478-8. اطلع عليه بتاريخ 29 September 2010. 
  25. ^ "Lithium Occurrence". Institute of Ocean Energy, Saga University, Japan. تمت أرشفته من الأصل على 2 May 2009. اطلع عليه بتاريخ 13 March 2009. 
  26. ^ أ ب ت ث "Some Facts about Lithium". ENC Labs. اطلع عليه بتاريخ 15 October 2010. 
  27. ^ "Extraction of metals from sea water". Springer Berlin Heidelberg. 1984. 
  28. ^ Garrett, Donald (2004) Handbook of Lithium and Natural Calcium, Academic Press, cited in The Trouble with Lithium , Meridian International Research (2008)
  29. ^ VDI nachrichten: Lithium – ein Spannungsmacher auf Kreislaufkurs. 7. Januar 2011, S. 3.
  30. ^ أ ب ت Kamienski, McDonald, Daniel P.; Stark, Marshall W.; Papcun, John R.، Conrad W. (2004). Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc. 
  31. ^ أ ب Hans Breuer: dtv-Atlas Chemie, Band 1. 9. Auflage, Deutscher Taschenbuch Verlag (dtv), München 2000, ISBN 3-423-03217-0.(لغة ألمانية)
  32. ^ Atkins, Peter (2010). Shriver & Atkins' Inorganic Chemistry (الطبعة 5). W. H. Freeman and Company. صفحة 296. ISBN 0199236178. 
  33. ^ Moores, S. (June 2007). "Between a rock and a salt lake". Industrial Minerals 477: 58. 
  34. ^ Taylor, S. R.; McLennan, S. M.; The continental crust: Its composition and evolution, Blackwell Sci. Publ., Oxford, 330 pp. (1985).
  35. ^ Clarke, G.M. and Harben, P.W., "Lithium Availability Wall Map". Published June 2009. Referenced at International Lithium Alliance
  36. ^ أ ب ت U.S. Geological Survey, 2012, commodity summaries 2011: U.S. Geological Survey
  37. ^ "The Trouble with Lithium 2" (PDF). Meridian International Research. 2008. اطلع عليه بتاريخ 29 September 2010. 
  38. ^ Meridian International Research: The trouble with Lithium 2. (PDF; 756 kB) Martainville, May 2008.
  39. ^ Risen، James (13 June 2010). "U.S. Identifies Vast Riches of Minerals in Afghanistan". The New York Times. اطلع عليه بتاريخ 13 June 2010. 
  40. ^ Boesgaard، A. M.؛ Steigman، G. (1985). "Big bang nucleosynthesis – Theories and observations". IN: Annual review of astronomy and astrophysics. Volume 23 (A86-14507 04–90). Palo Alto 23: 319. Bibcode:[1] 1985ARA&A..23..319B]]. doi:10.1146/annurev.aa.23.090185.001535. 
  41. ^ "Element Abundances". تمت أرشفته من الأصل على 1 September 2006. اطلع عليه بتاريخ 17 November 2009. 
  42. ^ Cain, Fraser (16 August 2006). "Why Old Stars Seem to Lack Lithium". 
  43. ^ Cain، Fraser. "Brown Dwarf". Universe Today. تمت أرشفته من الأصل على 25 February 2011. اطلع عليه بتاريخ 17 November 2009. 
  44. ^ Reid، Neill (10 March 2002). "L Dwarf Classification". اطلع عليه بتاريخ 6 March 2013. 
  45. ^ عن الأقزام البنية. (لغة ألمانية)
  46. ^ Chassard-Bouchaud، C؛ Galle، P؛ Escaig، F؛ Miyawaki، M (1984). "Bioaccumulation of lithium by marine organisms in European, American, and Asian coastal zones: microanalytic study using secondary ion emission". Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie 299 (18): 719–24. PMID 6440674. 
  47. ^ Schrauzer، GN (2002). "Lithium: Occurrence, dietary intakes, nutritional essentiality". Journal of the American College of Nutrition 21 (1): 14–21. doi:10.1080/07315724.2002.10719188. PMID 11838882. 
  48. ^ Onmeda Nährstoff-Lexikon, Stand 10. Juni 2009.(لغة ألمانية)
  49. ^ Zarse، Kim؛ Terao، Takeshi؛ Tian، Jing؛ Iwata، Noboru؛ Ishii، Nobuyoshi؛ Ristow، Michael (2011). "Low-dose lithium uptake promotes longevity in humans and metazoans". European Journal of Nutrition 50 (5): 387–9. doi:10.1007/s00394-011-0171-x. PMC 3151375. PMID 21301855. 
  50. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 73. ISBN 0-08-037941-9.
  51. ^ Romero, Simon (2 February 2009). "In Bolivia, a Tight Grip on the Next Big Resource". New York Times. 
  52. ^ "USGS Mineral Commodities Summaries 2009". USGS. 
  53. ^ أ ب ت ث ج ح Hammond, C. R. (2000). The Elements, in Handbook of Chemistry and Physics 81st edition. CRC press. ISBN 0-8493-0481-4. 
  54. ^ Money Game Contributors (26 April 2013). "New Wyoming Lithium Deposit". Business Insider. اطلع عليه بتاريخ 1 May 2013. 
  55. ^ Ober، Joyce A. "Lithium" (PDF). United States Geological Survey. صفحات 77–78. اطلع عليه بتاريخ 19 August 2007. 
  56. ^ "SQM Announces New Lithium Prices – SANTIAGO, Chile, September 30 /PRNewswire-FirstCall/". Prnewswire.com. 30 September 2009. اطلع عليه بتاريخ 1 May 2013. 
  57. ^ Riseborough، Jesse. "IPad Boom Strains Lithium Supplies After Prices Triple". Businessweek. اطلع عليه بتاريخ 1 May 2013. 
  58. ^ Parker, Ann. Mining Geothermal Resources. Lawrence Livermore National Laboratory
  59. ^ Patel, P. (2011-11-16) Startup to Capture Lithium from Geothermal Plants. technologyreview.com
  60. ^ Arnold F. Holleman, Egon Wiberg, Nils Wiberg: Lehrbuch der Anorganischen Chemie. 91.–100. Auflage, de Gruyter, Berlin 1985, ISBN 3-11-007511-3, S. 928–931.(لغة ألمانية)
  61. ^ Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.
  62. ^ "Coefficients of Linear Expansion". Engineering Toolbox. 
  63. ^ THERMO
  64. ^ Tuoriniemi, J; Juntunen-Nurmilaukas, K; Uusvuori, J; Pentti, E; Salmela, A; Sebedash, A (2007). "Superconductivity in lithium below 0.4 millikelvin at ambient pressure". Nature 447 (7141): 187–9. Bibcode:2007Natur.447..187T. doi:10.1038/nature05820. PMID 17495921. 
  65. ^ Struzhkin, V. V.; Eremets, M. I.; Gan, W; Mao, H. K.; Hemley, R. J. (2002). "Superconductivity in dense lithium". Science 298 (5596): 1213–5. Bibcode:2002Sci...298.1213S. doi:10.1126/science.1078535. PMID 12386338. 
  66. ^ K. Schubert: Ein Modell für die Kristallstrukturen der chemischen Elemente in: Acta Crystallographica 30, 1974, S. 193–204, doi:10.1107/S0567740874002469.(لغة ألمانية)
  67. ^ Overhauser، A. W. (1984). "Crystal Structure of Lithium at 4.2 K". Physical Review Letters 53: 64–65. Bibcode:1984PhRvL..53...64O. doi:10.1103/PhysRevLett.53.64. 
  68. ^ Schwarz، Ulrich (2004). "Metallic high-pressure modifications of main group elements". Zeitschrift für Kristallographie 219 (6–2004): 376. Bibcode:2004ZK....219..376S. doi:10.1524/zkri.219.6.376.34637. 
  69. ^ H. Malissa: Die Trennung des Lithiums vom Magnesium in Lithium-Magnesium-Legierungen. In: Fresenius’ Journal of Analytical Chemistry. 171, Nr. 4, 1959, S. 281–282, doi:10.1007/BF00555410.(لغة ألمانية)
  70. ^ M. Binnewies: Allgemeine und Anorganische Chemie. Spektrum Verlag, 2006, S. 328.(لغة ألمانية)
  71. ^ Mark J. Winter: Chemical Bonding. Oxford University Press, 1994, ISBN 0-19-855694-2.
  72. ^ http://web.mit.edu/newsoffice/2009/magnetic-gas-0918.html
  73. ^ Krebs, Robert E. (2006). The history and use of our earth's chemical elements: a reference guide. Greenwood Publishing Group. صفحة 47. ISBN 0-313-33438-2. 
  74. ^ Institute, American Geological؛ Union, American Geophysical؛ Society, Geochemical (1 January 1994). Geochemistry international 31 (1–4). صفحة 115. 
  75. ^ "XXIV.—On chemical analysis by spectrum-observations". Quarterly Journal of the Chemical Society of London 13 (3): 270. 1861. doi:10.1039/QJ8611300270. 
  76. ^ Beckford, Floyd. "University of Lyon course online (powerpoint) slideshow". تمت أرشفته من الأصل على 4 November 2005. اطلع عليه بتاريخ 27 July 2008. "definitions:Slides 8–10 (Chapter 14)" 
  77. ^ M. Binnewies: Allgemeine und Anorganische Chemie. Spektrum Verlag, 2006, S. 241.(لغة ألمانية)
  78. ^ Greenwood, Norman N.; Earnshaw, Alan (1984). Chemistry of the Elements. Oxford: Pergamon Press. pp. 97–99. ISBN 0-08-022057-6
  79. ^ Sapse, Anne-Marie and von R. Schleyer, Paul (1995). Lithium chemistry: a theoretical and experimental overview. Wiley-IEEE. ISBN 0-471-54930-4. 
  80. ^ "Isotopes of Lithium". Berkeley National Laboratory, The Isotopes Project. اطلع عليه بتاريخ 21 April 2008. 
  81. ^ Sonzogni, Alejandro. "Interactive Chart of Nuclides". National Nuclear Data Center: Brookhaven National Laboratory. اطلع عليه بتاريخ 6 June 2008. 
  82. ^ Asplund, M. et al. (2006). "Lithium Isotopic Abundances in Metal-poor Halo Stars". The Astrophysical Journal 644: 229. arXiv:astro-ph/0510636. Bibcode:2006ApJ...644..229A. doi:10.1086/503538. 
  83. ^ Chaussidon، M.؛ Robert، F.؛ McKeegan، K.D. (2006). "Li and B isotopic variations in an Allende CAI: Evidence for the in situ decay of short-lived 10Be and for the possible presence of the short−lived nuclide 7Be in the early solar system". Geochimica et Cosmochimica Acta 70 (1): 224–245. Bibcode:2006GeCoA..70..224C. doi:10.1016/j.gca.2005.08.016. 
  84. ^ Denissenkov، P. A.؛ Weiss، A. (2000). "Episodic lithium production by extra-mixing in red giants". Astronomy and Astrophysics 358: L49–L52. arXiv:astro-ph/0005356. Bibcode:2000A&A...358L..49D. 
  85. ^ Seitz، H.M.؛ Brey، G.P.؛ Lahaye، Y.؛ Durali، S.؛ Weyer، S. (2004). "Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes". Chemical Geology 212 (1–2): 163–177. doi:10.1016/j.chemgeo.2004.08.009. 
  86. ^ Martin Volkmer: Kernenergie Basiswissen. Inforum, 2007, ISBN 3-926956-44-5, S. 39 (PDF).(لغة ألمانية)
  87. ^ C. C. Bradley, C. A. Sackett, J. J. Tollett, R. G. Hulet: Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. In: Physical Review Letters 75, Nr. 9, 1995, S. 1687–1690, doi:10.1103/PhysRevLett.75.1687 (PDF).
  88. ^ S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Denschlag, R. Grimm: Bose-Einstein Condensation of Molecules. In: Science. 302, Nr. 5653, 2003, S. 2101–2103, doi:10.1126/science.1093280 (vgl. Dissertation des Autors Selim Jochim).
  89. ^ Duarte, F. J (2009). Tunable Laser Applications. CRC Press. صفحة 330. ISBN 1-4200-6009-0. 
  90. ^ أ ب USGS (2011). "Lithium" (PDF). اطلع عليه بتاريخ 3 November 2012. 
  91. ^ Clark، Jim (2005). "Some Compounds of the Group 1 Elements". chemguide.co.uk. اطلع عليه بتاريخ 8 August 2013. 
  92. ^ "Disposable Batteries - Choosing between Alkaline and Lithium Disposable Batteries". Batteryreview.org. اطلع عليه بتاريخ 10 October 2013. 
  93. ^ "Battery Anodes> Batteries & Fuel Cells> Research> The Energy Materials Center at Cornell". Emc2.cornell.edu. اطلع عليه بتاريخ 10 October 2013. 
  94. ^ Totten, George E.; Westbrook, Steven R. and Shah, Rajesh J. (2003). Fuels and lubricants handbook: technology, properties, performance, and testing, Volume 1. ASTM International. صفحة 559. ISBN 0-8031-2096-6. 
  95. ^ Rand, Salvatore J. (2003). Significance of tests for petroleum products. ASTM International. ISBN 0-8031-2097-4. 
  96. ^ Davis, Joseph R. ASM International. Handbook Committee (1993). Aluminum and aluminum alloys. ASM International. ISBN 978-0-87170-496-2. اطلع عليه بتاريخ 16 May 2011. 
  97. ^ أ ب Kean، Sam (2011). The Disappearing Spoon. 
  98. ^ Yacobi S, Ornoy A (2008). "Is lithium a real teratogen? What can we conclude from the prospective versus retrospective studies? A review". Isr J Psychiatry Relat Sci 45 (2): 95–106. PMID 18982835. 
  99. ^ Lieb، J؛ Zeff (1978). "Lithium treatment of chronic cluster headaches.". The British Journal of Psychiatry (133): 556–558. doi:10.1192/bjp.133.6.556. اطلع عليه بتاريخ 24 February 2014. 
  100. ^ Makhijani, Arjun and Yih, Katherine (2000). Nuclear Wastelands: A Global Guide to Nuclear Weapons Production and Its Health and Environmental Effects. MIT Press. ISBN 0-262-63204-7. 
  101. ^ National Research Council (U.S.). Committee on Separations Technology and Transmutation Systems (1996). Nuclear wastes: technologies for separations and transmutation. National Academies Press. صفحة 278. ISBN 0-309-05226-2. 
  102. ^ Barnaby, Frank (1993). How nuclear weapons spread: nuclear-weapon proliferation in the 1990s. Routledge. صفحة 39. ISBN 0-415-07674-9. 
  103. ^ Agarwal, Arun (2008). Nobel Prize Winners in Physics. APH Publishing. صفحة 139. ISBN 81-7648-743-0. 
  104. ^ "'Splitting the Atom': Cockcroft and Walton, 1932: 9. Rays or Particles?" Department of Physics,University of Cambridge
  105. ^ Baesjr، C (1974). "The chemistry and thermodynamics of molten salt reactor fuels". Journal of Nuclear Materials 51: 149. Bibcode:1974JNuM...51..149B. doi:10.1016/0022-3115(74)90124-X. 
  106. ^ Wiberg, Egon; Wiberg, Nils and Holleman, Arnold Frederick Inorganic chemistry, Academic Press (2001) ISBN 0-12-352651-5, p. 1089
  107. ^ Ernst-Christian, K. (2004). "Special Materials in Pyrotechnics: III. Application of Lithium and its Compounds in Energetic Systems". Propellants, Explosives, Pyrotechnics 29 (2): 67–80. doi:10.1002/prep.200400032. 
  108. ^ Mulloth, L.M. and Finn, J.E. (2005). The Handbook of Environmental Chemistry. 
  109. ^ "Application of lithium chemicals for air regeneration of manned spacecraft". Lithium Corporation of America & Aeropspace Medical Research Laboratories. 1965. 
  110. ^ "Lithium Perchlorate Oxygen Candle. Pyrochemical Source of Pure Oxygen - I&EC Product Research and Development (ACS Publications)". Pubs.acs.org. 1 May 2002. اطلع عليه بتاريخ 10 October 2013. 
  111. ^ Hobbs, Philip C. D. (2009). Building Electro-Optical Systems: Making It All Work. John Wiley and Sons. صفحة 149. ISBN 0-470-40229-6. 
  112. ^ Sinton، William M. (1962). "Infrared Spectroscopy of Planets and Stars". Applied Optics 1 (2): 105. Bibcode:1962ApOpt...1..105S. doi:10.1364/AO.1.000105. 
  113. ^ Point Defects in Lithium Fluoride Films Induced by Gamma Irradiation. World Scientific. 2002. صفحة 819. ISBN 981-238-180-5. 
  114. ^ Bansal, Raj K. (1996). Synthetic approaches in organic chemistry. صفحة 192. ISBN 0-7637-0665-5. 
  115. ^ "Organometallics". IHS Chemicals. February 2012. 
  116. ^ Yurkovetskii, A. V.؛ Kofman، V. L.؛ Makovetskii، K. L. (2005). "Polymerization of 1,2-dimethylenecyclobutane by organolithium initiators". Russian Chemical Bulletin 37 (9): 1782–1784. doi:10.1007/BF00962487. 
  117. ^ Quirk, Roderic P.؛ Cheng، Pao Luo (1986). "Functionalization of polymeric organolithium compounds. Amination of poly(styryl)lithium". Macromolecules 19 (5): 1291. Bibcode:1986MaMol..19.1291Q. doi:10.1021/ma00159a001. 
  118. ^ Stone, F. G. A.; West, Robert (1980). Advances in organometallic chemistry. Academic Press. صفحة 55. ISBN 0-12-031118-6. 
  119. ^ LiAl-hydride
  120. ^ Hughes, T.G.; Smith, R.B. and Kiely, D.H. (1983). "Stored Chemical Energy Propulsion System for Underwater Applications". Journal of Energy 7 (2): 128–133. doi:10.2514/3.62644. 
  121. ^ Furr, A. K. (2000). CRC handbook of laboratory safety. Boca Raton: CRC Press. ISBN 978-0-8493-2523-6. 

وصلات خارجية[عدل]