ليونهارت أويلر

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
ليونهارد أويلر
Leonhard Euler 2.jpg
ليونهارد أويلر بريشة الغنان عمانويل هاندمان
ولد في 15 أبريل 1707
بازل، سويسرا
توفي في 18 أيلول 1783 (76 عام)
سانت بطرسبرغ، روسيا
إقامة بروسيا، روسيا
سويسرا
جنسية سويسري
مجال البحث رياضي وفيزيائي
مشرف الدكتوراه يوهان برنولي
طلاب الدكتوراه نيكولاس فاس
يوهان هنرت
جوزيف لويس لاغرانج
ستيبان روموفسكي
اشتهر بـ انظر اللائحة
التوقيع

ولد ليونهارد أويلر (بالإنجليزية: Leonhard Euler) في 15 أبريل عام 1707م في بازل في سويسرا وتوفي في 18 سبتمبر عام 1783م في سانت بطرسبرغ. هو رياضي وفيزيائي سويسري من الرياضيين الذين تركوا أثرا في تاريخ العلوم.
أمضى أويلر معظم حياته البالغة في سانت بطرسبرغ، روسيا وبرلين، بروسيا. و يتعبر أبرز الرياضياتيين في القرن الثامن عشر، ومن أعظم الرياضياتيين في التاريخ, و هو من أكثر الرياضياتيين إنتاجًا، حيث ألف ما يتراوح ما بين الستين و الثمانين مؤلفا.[1]

حياته[عدل]

نشأته[عدل]

ورقة مالية سويسرية قديمة بقيمة عشر فرنكات تكرم أويلر

وُلد في الخامس عشر من أبريل عام 1707 في بازل لباول أويلر. و كان أبوه قسا. أما أمه مارجاريت بروكر فهي ابنة قس آخر. كان لديه أختان صغيرتان، الأولى تدعى آنا ماريا والثانية تدعى ماريا مجدلينا. بعد فترة قصيرة من ولادته انتقلت عائلة أويلر من بلدة بازل إلى بلدة ريهن بها أمضى ليونهارد معظم طفولته. كان الوالد باول أويلر صديقا لعائلة برنولي - يوهان بيرنولي، الذي اعتُبر حينها من أعظم الرياضياتيين في أوروبا، ولاحقًا كان له تأثير عظيم على الابن ليونهارد أويلر. تلقّن أويلر تعليمه الابتدائي في بازل حيث أرسله أهله إلى جدته، أم أمه. عندما بلغ الثالثة عشر من عمره, التحق بجامعة بازل. وفي سنة 1723 تلقى لقب الماستر في الفلسفة بعد كتابته لمقال قارن فيه فلسفة دكارت بفلسفة نيوتن. في هذه الفترة، تلقى أويلر دروسا من قبل يوهان برنولي الذي أعجب بالموهبة الخارقة لدى طالبه ليونهارد.[2] و في هذه الفترة أيضًا, درس أويلر علم اللاهوت واليونانية والعبرية بعد أن حثه أبوه على ذلك من أجل أن يصبح قسًا. ولكن يوهان برنولي استطاع إقناع والده أن ليونهارد ولد ليصبح رياضياتيا عظيما. في سنة 1726، أتم أولر مقالته عن انتشار الصوت[3] بعنوان De Sono. في هذه الفترة حاول ليونهارد (دون جدوى) التقدم والحصول على منصب في جامعة بازل.

سانت بطرسبرغ[عدل]

طابع بريدي طبع عام 1957 في الاتحاد السوفييتي سابقا، لإحياء الذكرى المائتين والخمسين لميلاد أويلر. كتب عليه ما يلي: 250 عاما بعد ميلاد عالم الرياضيات الكبير والأكاديمي ليونهارد أويلر.

برلين[عدل]

طابع بريدي طبع في الجمهورية الألمانية الديموقراطية سابقا، تكريما لأويلر عند الذكرى المائتين لوفاته. في وسطه جاءت صيغة المخطط المستوي V-E+F=2.
لوحة رسمها إيمانويل هاندمان عام 1753. تبين هاته اللوحة مشاكل صحية في العين اليمنى. قد يتعلق الأمر بمرض الحول. تبدو العين اليسرى بصحة جيدة ولكنها أصيبت فيما بعد بمرض الساد.[4]

تدهور حالة بصره[عدل]

تدهور بصر أويلر عبر مساره المهني في الرياضيات حيث أصيب عام 1735 بحمى كادت أن تؤدي بحياته، وبعد ذلك بثلاث سنوات، صار شبه أعمى بعينه اليمنى.

رجوعه إلى روسيا[عدل]

إسهاماته في الرياضيات والفيزياء[عدل]

عمل أويلر في جميع فروع الرياضيات تقريبا كالهندسة و التكامل و حساب المثلثات و الجبر و نظرية الاعداد وأيضا في الفيزياء المتصلة ونظرية لينر وفي فروع أخرى من الفيزياء. فهو علامة مميزة في تاريخ الرياضيات والكثير من أعماله موقع اهتمام أساسي والتي تشغل ما بين الستين و الثمانين مجلداً. وقد اقترن اسم أويلر بعدد هائل من الموضوعات في الرياضيات والفيزياء.

وكان أويلر من الرياضيين النشيطين جدًا حيث أن له أكثر من 886 إصدارا. ويرجع العديد من الرموز المستعملة اليوم في الرياضيات إليه كما يعتبره البعض مؤسس علم التحليل الرياضي. في سنة 1748 قام بنشر كتاب بعنوان Introductio in analysin infinitorum اكتسى في مفهوم الدالة صيغة محورية.

التعبيرات الرياضية[عدل]

قدم أويلر وعمم الكثير من التعبيرات الرياضية من خلال كتبه العديدة. و قدم مفهوم الدالة وكان أول من كتب د(س) أو (F(x والتي تعنى أن دالة د مطبقة على المتغير س. وقد قدم تعبيرا جديدا للدوال المثلثية، وأيضا يسمى العدد الطبيعي (ه) أو ما يسمى بالإنجليزية (e) بعدد أويلر. وهذا العدد هو الأساس للوغاريتم الطبيعى وأيضا أول من عبر عن المجموع بالحرف الاغريقي (∑) والعدد (i) لتمثيل العدد التخيلى (ت) والذي يساوي جذر سالب الواحد الصحيح. كما استخدم الحرف الاغريقى π للتعبير عن النسبة بين محيط الدائرة وقطرها وقد قام بتعميمه على الرغم من أن أصلها لا يرجع إلى أويلر، بل ان اول من اكتشف النسبة بين محيط الدائرة إلى قطرها هو العالم العبقرى السويسرى الجنسية الالمانى المولد الفيزيائى الفذ يوهان لامبرت(Johann Lambert 1728 - 1777)

التحليل[عدل]

في القرن الثامن عشر كان تطوير التفاضل والتكامل على رأس البحوث الرياضية. و كان بيرنولي صديق عائلة أويلر, مسؤولا عن كثير من التقدم في هذا المجال. وتقديرا لجهوده جعل أويلر دراسة التفاضل والتكامل موضع اهتماماته الرئيسية , وإن كانت بعض إثباتات أويلر غير مقبولة بقياسات الرياضيات وخصوصا اعتماده على مبدأ عمومية الجبر.

و قد أدت أفكاره إلى تطورات عظيمة حيث اشتهر نتيجة استعماله المكثف للمتسلسلات الأسية والتي هي عبارة عن مجموع عدد لا نهائى من الحدود لتمثيل دالة معينة ما. مثل :

e^x = \sum_{n=0}^\infty {x^n \over n!} = \lim_{n \to \infty}\left(\frac{1}{0!} + \frac{x}{1!} + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!}\right).
و الجدير بالذكر أن أويلر أثبت مباشرة المتسلسة الأسية للدالة الأسية هس و دالة الظل العكسية.

قام نيوتن و لايبنز باختراع الأساليب غير المباشرة لمعرفة المتسلسلة الأسية لدالة ما في ما بين عامي 1670 و 1680 م. وقد مكنه استخدام المتسلسة الأسي في حل الكثير من مشاكل بازل المشهورة "Basel Problem" في عام 1735 م. وقدم إثباتاً أكثر تفصيلا في عام 1741 م.

عرض أويلر استخدام الدوال الأسية واللوغاريتمات في التحاليل الرياضية. كما اكتشف طرقا للتعبير عن الدوال اللوغاريتمية المختلفة باستخدام المتسلسلات الأسية. و نجح في تعريف اللوغاريتم للأعداد السالبة والمركبة, مما وسع مجال التطبيقات الرياضية للوغاريتميات. وقد عرف الدالة الأسية الطبيعية للأعداد المركبة واكتشف علاقتها بالدوال المثلثية وحيث تتحق علاقة أويلر لأي عدد حقيقي Θ.

تفسير هندسي لصيغة أويلر

e^{ix}=cos(x)+ i\cdot sin(x)

حيث x هي الزاوية.

الحالة الخاصة لهذه الصيغة هي المتطابقة الرياضية المعروفة باسم متطابقة أويلر،
e^{i \pi} +1 = 0 \, وتحدث عندما x=π.

تسمى هاته المتطابقة بمتطابقة أويلر وهي أكثر العلاقات بروزا في الرياضيات, كما نعتها ريتشارد فينمان. والتي تستخدم في التعبير عن الجمع والضرب والمتطابقات , وقد استخدمت مفردة للتعبير عن بعض الثوابت المهمة مثل (صفر, ه, ت , ط)

و قد صوت قارؤو مجلة الذكاء الرياضى بأنها أجمل العلاقات الرياضية على الإطلاق. و مجملاً, يرجع الفضل إلى أويلر في ثلاث من أهم خمس علاقات في هذا المجال.

أدت علاقة أويلر مباشرة إلى صيغة دي موافر. بالأضافة إلى ذلك, وضع أويلر نظرية الدوال المتسامية العليا وقدم دالة غاما , وعرض طرقا جديدة لحل المعادلة التربيعية, و وجد طرقا لحساب التكامل والنهايات للدوال المركبة واخترع التكاملات المتغيرة والتي أدت إلى معادلة أويلر لاغرانج.

أسس أويلر طرقا تحليلية لحل مشاكل نظرية الأعداد. وبهذا قد جمع فرعين مختلفين وجعلهما فرعا واحدا جديدا هو نظرية المتسلسلات الهندسية العليا والمتسلسلات والدوال المثلثية العليا ونظرية التحليل للكسور المستمرة. وكمثال, فقد أثبت لا نهائية الأعداد الأولية باستخدام تباعد سلسلة المتوافق و قد استخدم طرقا تحليلية لمعرفة توزيع الأعداد الأولية. عمل أويلر في هذا المجال أدى إلى تطوير نظرية الأعداد الأولية.

نظرية الأعداد[عدل]

يرجع اهتمام أويلر بنظرية الأعداد إلى تأثير أعمال صديقه كريستيان غولدباخ. و قد كانت معظم بدايات عمله في هذا المجال قائمة على أعمال بيير دي فيرما. وقد طور أويلر بعض أفكار بيير دي فيرما و أثبت خطأ بعض من حدسياته. ربط أويلر دراسة توزيع الأعداد الأولية بأفكار في التحليل. في هذا الاتجاه برهن على تباعد مجموع مقلوبات الأعداد الأولية. كما اكتشف العلاقة بين دالة زيتا لريمان والأعداد الأولية. يعرف ذلك ببرهان صيغة جداء أويلر بالنسبة لدالة زيتا لريمان.

برهن أويلر على متطابقات نيوتن وعلى مبرهنة فيرما الصغرى وعلى مبرهنة فيرما حول مجموع مربعين كما ساهم بشكل متميز في مبرهنة المربعات الأربع للاغرانج. اخترع أيضا الدالة المعروفة باسم مؤشر أويلر (φ(n، (عدد الأعداد الصحيحة الموجبة الأصغر من n والأولية معه). باستعمال خصائص هاته الدالة، عمم مبرهنة فيرما الصغرى لِما يعرف حاليا بمبرهنة أويلر. ساهم بشكل أساسي في نظرية الأعداد المثالية اللائي أبهرن علماء الرياضيات منذ أقليدس.

في عام 1772، برهن أويلر على أن العدد 231 − 1 = 2,147,483,647 هو عدد أولي لميرسين. يُعتقد أن هذا العدد بقي حتى عام 1867 أكبر عدد أولي معروف.

الهندسة[عدل]

برهن أويلر أنه في أي مثلث, النقط التسع التالية تنتمي إلى نفس الدائرة :

  • نقاط تقاطع الارتفاعات الثلاثة بالأضلع المقابلة,
  • منتصفات الأضلع الثلاثة.
  • منتصفات القطع الثلاث اللائي يربطن مركز تقاطع الارتفاعات برؤوس المثلث الثلاثة.

تسمى هاته الدائرة بدائرة أويلر.

نظرية المخططات[عدل]

Map of كونيغسبرغ in Euler's time showing the actual layout of the جسور كونيغسبرغ السبعة, مبينة النهر بريغل والجسور.

في عام 1736، حلحل أويلر المعضلة المعروفة باسم جسور كونيغسبرغ السبعة. في مدينة كونيغسبرغ في بروسيا، الواقعة على نهر بريغوليا، كان يوجد جزيرتان كبيرتان، ترتبطان ببعضهما وباليابسة بواسطة سبعة جسور. تتمثل المعضلة في الإجابة على السؤال التالي : هل من الممكن ايجاد طريق يمر بالجسور السبعة، مرة واحدة، لا أقل ولا أكثر، بكل جسر، ثم الرجوع بعد ذلك إلى نقطة الانطلاق ؟. الجواب على هذا السؤال هو النفي لأن هذا المخطط لا يحتوي على أي دارة أويلرية. يعتبر هذا الحل أول مبرهنة في نظرية المخططات، وبالتحديد في نظرية المخططات المستوية.

انظر إلى مميزة أويلر.

الرياضيات التطبيقية[عدل]

ساهم أويلر في تطوير معادلة شعاع أويلر-بيرنولي.

\gamma = \lim_{n \rightarrow \infty } \left( 1+ \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots + \frac{1}{n} - \ln(n) \right).

الفيزياء والفلك[عدل]

المنطق[عدل]

أويلر هو أول من استعمل المنحنيات المغلقة للتعبير عن المنطق ...

انظر إلى الرسم البياني لأويلر.

فلسفته واعتقاداته الدينية[عدل]

إحياء ذكراه[عدل]

وضعت صورة أويلر في الأوراق المالية السويسرية من فئة عشر فرنكات، كما وضعت في طوابع بريدية سويسرية وألمانية وروسية تكريما له.

كتبه[عدل]

الصفحة الأولى لكتاب لأويلر عنوانه Methodus inveniendi lineas curvas والذي قد يترجم إلى : طريقة إيجاد الخطوط المنحنية.
  • عناصر من الجبر، يبتدأ هذا الكتاب في الجبر الأساسي بنقاش حول طبيعة الأعداد ويعطي مقدمة يسيرة الفهم إلى الجبر، متضمنا صيغا لحلول متعددات الحدود.
  • Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici latissimo sensu accepti (1744). العنوان اللاتيني يترجم إلى طريقة إيجاد الخطوط المنحنية التي تتمتع بخصائص القيم القصوى أو الدنيا, أو الحلول لمسائل ذات محيط ثابت في المعنى المقبول الواسع.[5]

انظر أيضًا[عدل]

مراجع[عدل]

  1. ^ Finkel، B.F. (1897). "Biography- Leonard Euler". The American Mathematical Monthly 4 (12): 300. doi:10.2307/2968971. JSTOR 2968971. 
  2. ^ James، Ioan (2002). Remarkable Mathematicians: From Euler to von Neumann. Cambridge. صفحة 2. ISBN 0-521-52094-0. 
  3. ^ Translation of Euler's dissertation in English by Ian Bruce
  4. ^ Calinger, Ronald (1996). "Leonhard Euler: The First St. Petersburg Years (1727–1741)". Historia Mathematica 23 (2): 154–155. doi:10.1006/hmat.1996.0015. 
  5. ^ E65 — Methodus... entry at Euler Archives. Math.dartmouth.edu. Retrieved on 2011-09-14.

وصلات خارجية[عدل]

ت