مبرهنة النمطية

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث

في الرياضيات، مبرهنة النمطية (بالإنكليزية: Modularity theorem) (كانت تسمى فيما قبل حدسية تانياما-شيمورا-فايل وأسماء أخرى)، تنص على أن المنحنيات الإهليلجية عبر حقل الأعداد الجذرية ترتبط بأشكال نمطية.

النص[عدل]

تنص المبرهنة على أن أي منحنى إهليلجي معرف على Q يمكن أن يُحصل عليه من خلال تطبيق جذري بمعاملات صحيحة ينطلق من منحنى نمطي كلاسيكي

X_0(N)\

بالنسبة لعدد صحيح N ما.

انظر إلى دالة مولدة وإلى متسلسلة فورييه.

التاريخ[عدل]

انظر إلى يوتاكا تانياما وإلى غورو شيمورا.

جذبت هده الحدسية الكثير من الاهتمام عندما بين جيرار فراي في عام 1986 أن حدسية تانياما-شيمورا-فايل تعني مبرهنة فيرما الأخيرة.

مراجع[عدل]

وصلات خارجية[عدل]

Midori Extension.svg
هذه بذرة مقالة بحاجة للتوسيع. شارك في تحريرها.