مبرهنة كارنوت

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
\begin{align} & {} \qquad DG + DH + DF  \\ & {} = |DG| + |DH|- |DF| \\ & {} = R + r \end{align}

في الهندسة الإقليدية، تنص مبرهنة كارنوت التي سميت على اسم لازار كارنوت (1753 - 1823) مايلي: ليكن ABC مثلث ما، فإن مجموع المسافات من مركزالدائرة المحيطة D إلى أضلاع المثلث ABC تحقق العلاقة:

DF + DG + DH = R + r,

حيث r نصف القطر الدائرة المحاطة، R نصف قطر الدائرة المحيطة. وتأخذ إشارة المسافة على أنها سالبة إذا كانت القطعة المستقيمة DX (X = F, G, H) تقع بكاملها خارج المثلث. حيث في الصورة الموضحة القطعة المستقيمة DF تكون ذات طول سالب، والقطعتين المستقيمتين DGو DH موجبتان.

تستخدم مبرهنة كارنوت في برهان مبرهنة يابانية في مضلع دائري.

وصلات خارجية[عدل]