ملحق:قائمة الأعداد الأولية

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث

بالنظر إلى مبرهنة إقليدس, عدد الأعداد الأولية غير منته. الأعداد الأولية تتكون من صيغ أولية مختلفة. الأعداد الأولية الخمس مائة الأولى مدرجة أدناه، تليها قوائم الأعداد الأولى من مختلف الأنواع في الترتيب الأبجدي.

محتويات

الأعداد الأولية الخمس مائة الأولى[عدل]

كل صف من الصفوف الخمسة والعشرين في الجدول التالي يحتوي على عشرين عددا أوليا.

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541
547 557 563 569 571 577 587 593 599 601 607 613 617 619 631 641 643 647 653 659
661 673 677 683 691 701 709 719 727 733 739 743 751 757 761 769 773 787 797 809
811 821 823 827 829 839 853 857 859 863 877 881 883 887 907 911 919 929 937 941
947 953 967 971 977 983 991 997 1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069
1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 1193 1201 1213 1217 1223
1229 1231 1237 1249 1259 1277 1279 1283 1289 1291 1297 1301 1303 1307 1319 1321 1327 1361 1367 1373
1381 1399 1409 1423 1427 1429 1433 1439 1447 1451 1453 1459 1471 1481 1483 1487 1489 1493 1499 1511
1523 1531 1543 1549 1553 1559 1567 1571 1579 1583 1597 1601 1607 1609 1613 1619 1621 1627 1637 1657
1663 1667 1669 1693 1697 1699 1709 1721 1723 1733 1741 1747 1753 1759 1777 1783 1787 1789 1801 1811
1823 1831 1847 1861 1867 1871 1873 1877 1879 1889 1901 1907 1913 1931 1933 1949 1951 1973 1979 1987
1993 1997 1999 2003 2011 2017 2027 2029 2039 2053 2063 2069 2081 2083 2087 2089 2099 2111 2113 2129
2131 2137 2141 2143 2153 2161 2179 2203 2207 2213 2221 2237 2239 2243 2251 2267 2269 2273 2281 2287
2293 2297 2309 2311 2333 2339 2341 2347 2351 2357 2371 2377 2381 2383 2389 2393 2399 2411 2417 2423
2437 2441 2447 2459 2467 2473 2477 2503 2521 2531 2539 2543 2549 2551 2557 2579 2591 2593 2609 2617
2621 2633 2647 2657 2659 2663 2671 2677 2683 2687 2689 2693 2699 2707 2711 2713 2719 2729 2731 2741
2749 2753 2767 2777 2789 2791 2797 2801 2803 2819 2833 2837 2843 2851 2857 2861 2879 2887 2897 2903
2909 2917 2927 2939 2953 2957 2963 2969 2971 2999 3001 3011 3019 3023 3037 3041 3049 3061 3067 3079
3083 3089 3109 3119 3121 3137 3163 3167 3169 3181 3187 3191 3203 3209 3217 3221 3229 3251 3253 3257
3259 3271 3299 3301 3307 3313 3319 3323 3329 3331 3343 3347 3359 3361 3371 3373 3389 3391 3407 3413
3433 3449 3457 3461 3463 3467 3469 3491 3499 3511 3517 3527 3529 3533 3539 3541 3547 3557 3559 3571

(متسلسلة A000040 في OEIS)

تفيد تقارير مشروع اثبات حدث جولدباتش أنه قد حسبت جميع الأعداد الأولية 10 18 أدناه.[1] وهذا يعني 24.739.954.287.740.860 أولية، لكنها لم تكن مخزنة. هناك صيغ معروفة لتقييم وظيفة الإحصاء الأولية (العدد الأولى أقل من قيمة معينة) أسرع من الأولية المحسوبة. هذا وقد تم استخدامها لحساب أن هناك 1.925.320.391.606.803.968.923 أولية 10 23 أدناه.

قوائم الأعداد الأولية حسب النوع[عدل]

ترد أدناه الأرقام الأولية في كثير من أشكال وأنواع. المزيد من التفاصيل في هذه المقالة للحصول على اسم. ن هو عدد الطبيعية (بما في ذلك 0) في التعاريف. والعدد الأولى هو العدد الذي لا يمكن أن يكون مقسوما على عدد غير (1) ونفسه.

الأعداد الأولية المتوازنة[عدل]

الأعداد الأولية التي هي متوسط الأعداد الأولية السابقة والأعداد الأولية التالية.

5، 53، 157، 173، 211، 257، 263، 373، 563، 593، 607، 653، 733، 947، 977، 1103، 1123، 1187، 1223، 1367، 1511، 1747، 1753، 1907، 2287، 2417، 2677، 2903، 2963، 3307، 3313، 3637، 3733، 4013، 4409، 4457، 4597، 4657، 4691، 4993، 5107، 5113، 5303، 5387، 5393 OEISA006562

الأعداد الأولية البيل[عدل]

يعبي التي هي عدد مجموعة أقسام مع أعضاء ن.

2، 5، 877، 27644437، 35742549198872617291353508656626642567، 359334085968622831041960188598043661065388726959079837. المصطلح القادم به 6539 رقم. OEISA051131.

أعداد كارول الأولية[عدل]

من النموذج (2^n - 1)^2 - 2

7، 47، 223، 3967، 16127، 1046527، 16769023، 1073676287، 68718952447، 274876858367، 4398042316799، 1125899839733759، 18014398241046527، 1298074214633706835075030044377087 OEISA091516

الأعداد الأولية العشرية المركزية[عدل]

الشكل 5(n^2-n)+1

11، 31، 61، 101، 151، 211، 281، 661، 911، 1051، 1201، 1361، 1531، 1901، 2311، 2531، 3001، 3251، 3511، 4651، 5281، 6301، 6661، 7411، 9461، 9901، 12251، 13781، 14851، 15401، 18301، 18911، 19531، 20161، 22111، 24151، 24851، 25561، 27011، 27751... OEISA090562

الأعداد الأولية السباعية المركزية[عدل]

الشكل (7 ن 2 -- 7 ن + 2) / 2.

43، 71، 197، 463، 547، 953، 1471، 1933، 2647، 2843، 3697، 4663، 5741، 8233، 9283، 10781، 11173، 12391، 14561، 18397، 20483، 29303، 29947، 34651، 37493، 41203، 46691، 50821، 54251، 56897، 57793، 65213، 68111، 72073، 76147، 84631، 89041، 93563... (أولية في OEISA069099

الأعداد الأولية المربعة المركزية[عدل]

من شكل n^2 + (n + 1)^2

5، 13، 41، 61، 113، 181، 313، 421، 613، 761، 1013، 1201، 1301، 1741، 1861، 2113، 2381، 2521، 3121، 3613، 4513، 5101، 7321، 8581، 9661، 9941، 10513، 12641، 13613، 14281، 14621، 15313، 16381، 19013، 19801، 20201، 21013، 21841، 23981، 24421، 26681... OEISA027862

الأعداد الأولية الثلاثية المركزية[عدل]

من النموذج (3 ن ن 2 + 3 + 2) / 2.

19، 31، 109، 199، 409، 571، 631، 829، 1489، 1999، 2341، و 2971، 3529، 4621، 4789، 7039، 7669، 8779، 9721، 10459، 10711، 13681، 14851، 16069، 16381، 17659، 20011، 20359، 23251، 25939، 27541، 29191، 29611، 31321، 34429، 36739، 40099، 40591، 42589 OEISA125602

الأعداد الأولية تشن[عدل]

p هي أعداد أولية وP + 2 هي أولية أو شبه أولية

2، 3، 5، 7، 11، 13، 17، 19، 23، 29، 31، 37، 41، 47، 53، 59، 67، 71، 83، 89، 101، 107، 109، 113، 127، 131، 137، 139، 149، 157، 167، 179، 181، 191، 197، 199، 211، 227، 233، 239، 251، 257، 263، 269، 281، 293، 307، 311، 317، 337، 347، 353، 359، 379، 389، 401، 409 OEISA109611

الأعداد الأولية الدائرية[عدل]

الأعداد الأولية الدائرية هو العدد الذي لا يزال أولي على أي تناوب دوري (ABCD -> BCDA -> CDAB... -> ABCD) من أرقام (في قاعدة 10). مثلا 719 و 197 و 971 أعداد أولية.

2، 3، 5، 7، 11، 13، 17، 31، 37، 71، 73، 79، 97، 113، 131، 197، 199، 311، 337، 373، 719، 733، 919، 971، 991، 1193، 1931، 3119، 3779، 7793، 7937، 9311، 9377، 11939، 19391، 19937، 37199، 39119، 71993، 91193، 93719، 93911، 99371، 193939، 199933، 319993، 331999، 391939، 393919، 919393، 933199، 939193، 939391، 993319، 999331 ،...

الأعداد الأولية ذات القرابة[عدل]

(ع، ع + 4) الأولية على حد سواء.

(3، 7)، (7، 11)، (13، 17)، (19، 23)، (37، 41)، (43، 47)، (67، 71)، (79، 83)، (97، 101)، (103، 107)، (109، 113)، (127، 131)، (163، 167)، (193، 197)، (223، 227)، (229، 233)، (277، 281)

الأعداد الأولية الكوبية[عدل]

النموذج \tfrac{x^3-y^3}{xy}، x=y+1 :

7، 19، 37، 61، 127، 271، 331، 397، 547، 631، 919، 1657، 1801، 1951، 2269، 2437، و 2791، 3169، 3571، 4219، 4447، 5167، 5419، 6211، 7057، 7351، 8269، 9241، 10267، 11719، 12097، 13267، 13669، 16651، 19441، 19927، 22447، 23497، 24571، 25117، 26227، 27361، 33391، 35317 OEISA002407

النموذج \tfrac{x^3-y^3}{x-y}\tfrac{x^3-y^3}{xy}، x=y+2 :

13، 109، 193، 433، 769، 1201، 1453، 2029، 3469، 3889، 4801، 10093، 12289، 13873، 18253، 20173، 21169، 22189، 28813، 37633، 43201، 47629، 60493، 63949، 65713، 69313، 73009، 76801، 84673، 106033، 108301، 112909، 115249 OEISA002648

الأعداد الأولية الكولية[عدل]

في شكل * ن ن 2 + 1.

3، 393050634124102232869567034555427371542904833 OEISA050920

الأعداد الأولية ثنائية السطح[عدل]

الأعداد الأولية أن يبقى أوليا عندما تقرأ مقلوبة أو معكوسة في عرض سبع أجزاء.

2، 5، 11، 101، 181، 1181، 1811، 18181، 108881، 110881، 118081، 120121، 121021، 121151، 150151، 151051، 151121، 180181، 180811، 181081 OEISA038136 [2]

الأعداد الأولية المزدوجة ميرسين[عدل]

الشكل 2^{(2^p-1)}-1 ع للأعداد الأولية.

7، 127، 2147483647، 170141183460469231731687303715884105727 (الأولية OEISA077586

اعتبارا من أول يناير 2008، وهذه هي الوحيدة المعروفة الأعداد الأولية المزدوجة لميرسين (فرعية من أولية ميرسين).

أعداد أيزنشتاين الأولية دون جزء تخيلي[عدل]

انظر عدد أيزنشتاين الأولي.

أعداد أيزنشتاين الصحيحة هي أعداد غير قابلة للاختزال وحقيقية (أعداد أولية على شكل 3n - 1).

2، 5، 11، 17، 23، 29، 41، 47، 53، 59، 71، 83، 89، 101، 107، 113، 131، 137، 149، 167، 173، 179، 191، 197، 227، 233، 239، 251، 257، 263، 269، 281، 293، 311، 317، 347، 353، 359، 383، 389، 401 OEISA003627

الأولية القلوبة[عدل]

الأعداد الأولية التي تصبح أعداد مختلفة عندما يتم عكس الأرقام العشرية.

13، 17، 31، 37، 71، 73، 79، 97، 107، 113، 149، 157، 167، 179، 199، 311، 337، 347، 359، 389، 701، 709، 733، 739، 743، 751، 761، 769، 907، 937، 941، 953، 967، 971، 983، 991 OEISA006567

أعداد اقليدس الأولية[عدل]

في شكل ع ن # + 1 (مجموعة فرعية من الأعداد الأولية الأصلية).

3، 7، 31، 211، 2311، OEISA018239 [3]

الأعداد الأولية الزوجية[عدل]

الشكل 2 ن.

2

الرقم الأولى الوحيد الزوجى هو 2. 2 ولذلك تسمى أحيانا "العدد الأولى الشاذ" كتورية على غير معنى الرياضية من "الغريب". [1]

الأعداد الأولية العاملية[عدل]

على شكل n! − 1 أو n! + 1.


2، 3، 5، 7، 23، 719، 5039، 39916801، 479001599، 87178291199، 10888869450418352160768000001، 265252859812191058636308479999999، 263130836933693530167218012159999999، 8683317618811886495518194401279999999 OEISA088054

أعداد فيرما الأولية[عدل]

الشكل 2^{2^n} + 1

3، 5، 17، 257، 65537 OEISA019434

في نيسان 2009 كانت هذه هي أرقام فيرما الأولية الوحيدة المعروفة.

أعداد فيبوناتشي الأولية[عدل]

الأعداد الأولية في ترتيب فيبوناتشى F 0 = 0، 1 = 1 F، F = ن ن ن -1 + F -2.

2، 3، 5، 13، 89، 233، 1597، 28657، 514229، 433494437، 2971215073، 99194853094755497، 1066340417491710595814572169، 19134702400093278081449423917 OEISA005478

أعداد فورشن الأولية[عدل]

أعداد فورشن الأولية (وقد محدوس أنها جميعا).

3، 5، 7، 13، 17، 19، 23، 37، 47، 59، 61، 67، 71، 79، 89، 101، 103، 107، 109، 127، 151، 157، 163، 167، 191، 197، 199، 223، 229، 233، 239، 271، 277، 283، 293، 307، 311، 313، 331، 353، 373، 379، 383، 397 OEISA046066

أرقام غاوس الأولية[عدل]

العنصر الأولى في أعداد غاوس (الأعداد الأولية في شكل 4 ن + 3).

3، 7، 11، 19، 23، 31، 43، 47، 59، 67، 71، 79، 83، 103، 107، 127، 131، 139، 151، 163، 167، 179، 191، 199، 211، 223، 227، 239، 251، 263، 271، 283، 307، 311، 331، 347، 359، 367، 379، 383، 419، 431، 439، 443، 463، 467، 479، 487، 491، 499، 503 OEISA002145

أعداد جينوتشى الأولية[عدل]

17

العدد الأولى الايجابى الوحيد من أعداد جينوتشى هو 17.[4]

الأعداد الأولية الجيدة[عدل]

الأولية ع ن ع ن التي ل2> ط ع -1 × ع ط +1 للجميع 1 ≤ ≤ ط ن -1، حيث ن ع ن هو الأولى السابع.

5، 11، 17، 29، 37، 41، 53، 59، 67، 71، 97، 101، 127، 149، 179، 191، 223، 227، 251، 257، 269، 307 OEISA028388

الأولية السعيدة[عدل]

الأعداد السعيدة هي الأولية

7، 13، 19، 23، 31، 79، 97، 103، 109، 139، 167، 193، 239، 263، 293، 313، 331، 367، 379، 383، 397، 409، 487، 563، 617، 653، 673، 683، 709، 739، 761، 863، 881، 907، 937، 1009، 1033، 1039، 1093) OEISA035497

أعداد هيجز الأولية للتربيع[عدل]

الأعداد الأولية P -- 1 يقسم مربع الناتج لجميع المصطلحات في وقت سابق.

2، 3، 5، 7، 11، 13، 19، 23، 29، 31، 37، 43، 47، 53، 59، 61، 67، 71، 79، 101، 107، 127، 131، 139، 149، 151، 157، 173، 181، 191، 197، 199، 211، 223، 229، 263، 269، 277، 283، 311، 317، 331، 347، 349 OEISA007459

أعداد كوتوتينت العالية الأولية[عدل]

الأعداد الأولية cototient التي هي أكثر من أي عدد صحيح أقل من ذلك إلا 1.

2، 23، 47، 59، 83، 89، 113، 167، 269، 389، 419، 509، 659، 839، 1049، 1259، 1889 OEISA105440

الأعداد الأولية الغير منتظمة[عدل]

العدد الأولى الزوجى P الذي يقسم فئة العدد في المجال الدورى p-th

37، 59، 67، 101، 103، 131، 149، 157، 233، 257، 263، 271، 283، 293، 307، 311، 347، 353، 379، 389، 401، 409، 421، 433، 461، 463، 467، 491، 523، 541، 547، 557، 577، 587، 593، 607، 613، 617، 619 OEISA000928

العدد الأولى كينيا[عدل]

من النموذج (2^n + 1)^2 - 2

7، 23، 79، 1087، 66047، 263167، 16785407، 1073807359، 17180131327، 68720001023، 4398050705407، 70368760954879، 18014398777917439، 18446744082299486207 OEISA091514

الأعداد الأولية القابلة للبتر من اليسار[عدل]

الأعداد الأولية التي تبقى أولية عندما يتم إزالة العشرية المؤدية للرقم بالتتابع.

2، 3، 5، 7، 13، 17، 23، 37، 43، 47، 53، 67، 73، 83، 97، 113، 137، 167، 173، 197، 223، 283، 313، 317، 337، 347، 353، 367، 373، 383، 397، 443، 467، 523، 547، 613، 617، 643، 647، 653، 673، 683 OEISA024785

أعداد ليلاند الأولية[عدل]

النموذج xy + yx with 1 < x ≤ y

17، 593، 32993، 2097593، 8589935681، 59604644783353249، 523347633027360537213687137، 43143988327398957279342419750374600193 OEISA094133

الأعداد الأولية الطويلة[عدل]

الأعداد الأولية p التي، في قاعدة b، \frac{b^{p-1}-1}{p}تعطى عدد دورى فهي تدعى أيضا أعداد ريبتند الأولية. الأعداد الأولية p للقاعدة 10 :

7، 17، 19، 23، 29، 47، 59، 61، 97، 109، 113، 131، 149، 167، 179، 181، 193، 223، 229، 233، 257، 263، 269، 313، 337، 367، 379، 383، 389، 419، 433، 461، 487، 491، 499، 503، 509، 541، 571، 577، 593 OEISA001913

أعداد لوكاس الأولية[عدل]

الأعداد الأولية في تسلسل أرقام لوكاس لام 0 = 2، ل 1 = 1 ، لام لام ن ن = -1 + لام ن -2.

2 [5]، 3، 7، 11، 29، 47، 199، 521، 2207، 3571، 9349، 3010349، 54018521، 370248451، 6643838879، 119218851371، 5600748293801، 688846502588399، 32361122672259149 OEISA005479

الأعداد الأولية الجالبة للحظ[عدل]

الأرقام المحظوظة هي الأولية.

3، 7، 13، 31، 37، 43، 67، 73، 79، 127، 151، 163، 193، 211، 223، 241، 283، 307، 331، 349، 367، 409، 421، 433، 463، 487، 541، 577، 601، 613، 619، 631، 643، 673، 727، 739، 769، 787، 823، 883، 937، 991، 997 OEISA031157

أعداد ماركوف الأولية[عدل]

الأعداد الأولية p التي توجد أعداد صحيحة س وص بحيث x^2 + y^2 + p^2 = 3xyp

2، 5، 13، 29، 89، 233، 433، 1597، 2897، 5741، 7561، 28657، 33461، 43261، 96557، 426389، 514229 (يعبي في OEISA002559

أعداد ميرسين الأولية[عدل]

الشكل 2 ن -- 1. أوّل 12 :

3، 7، 31، 127، 8191، 131071، 524287، 2147483647، 2305843009213693951، 618970019642690137449562111، 162259276829213363391578010288127، 170141183460469231731687303715884105727 OEISA000668

اعتبارا من يونيو 2009، هناك 47 عدد معروف من أعداد ميرسين (و العدد 47 المكتشف هو في الواقع ال46 في الحجم). ال13، وال14 وال47 (استنادا إلى حجم)، على التوالي ،بها 157، 183، و 12.978.189 أرقام.

أرقام ميلز الأولية[عدل]

النموذج \lfloor \theta^{3^{n}}\;\rfloor، حيث θ هي ثابت ميلز. هذا النموذج هو الأولى لجميع الأعداد الصحيحة الموجبة ن.

2، 11، 1361، 2521008887، 16022236204009818131831320183 OEISA051254

الأعداد الأولية الأدنى[عدل]

الأولية التي لا يوجد تسلسل أقصر للأرقام العشرية التي تشكل عدد أولى. هناك بالضبط 26 من الأعداد الأولية الأدنى :

2، 3، 5، 7، 11، 19، 41، 61، 89، 409، 449، 499، 881، 991، 6469، 6949، 9001، 9049، 9649، 9949، 60649، 666649، 946669، 60000049، 66000049، 66600049 OEISA071062

أعداد موتسكين الأولية[عدل]

الأولية التي هي الأعداد لعدد من الطرق المختلفة لرسم أوتار غير متقاطعة في دائرة بين نقاط ن.

2، 127، 15511، OEISA092832

أعداد نيومان - شانكس ويليامز الأولية[عدل]

أعداد نيومان - شانكس ويليامز هي الأولية.

7، 41، 239، 9369319، 63018038201، 489133282872437279، 19175002942688032928599 OEISA088165

الأعداد الأولية الفردية[عدل]

الشكل 2 ن -- 1.

3، 5، 7، 11، 13، 17، 19، 23، 29، 31، 37، 41، 43، 47، 53، 59، 61، 67، 71، 73، 79، 83، 89، 97، 101، 103، 107، 109، 113، 127، 131، 137، 139، 149، 151، 157، 163، 167، 173، 179، 181، 191، 193، 197، 199... OEISA065091

جميع الأعداد الأولية باستثناء 2 هي فردية.

أعداد بادوفان الأولية[عدل]

الأعداد الأولية في تسلسل بادوفان P(0)=P(1)=P(2)=1، P(n)=P(n-2)+P(n-3)

2، 3، 5، 7، 37، 151، 3329، 23833، 13091204281، 3093215881333057، 1363005552434666078217421284621279933627102780881053358473 OEISA100891

أعداد بليندروميك الأولية[عدل]

الأعداد الأولية التي تبقى نفسها عندما تتم قراءة الأرقام العشرية إلى الوراء.

2، 3، 5، 7، 11، 101، 131، 151، 181، 191، 313، 353، 373، 383، 727، 757، 787، 797، 919، 929، 10301، 10501، 10601، 11311، 11411، 12421، 12721، 12821، 13331، 13831، 13931، 14341، 14741 OEISA002385

الأعداد الأولية الفاصلة[عدل]

الأرقام الفاصلة هي الأولية.

2، 3، 5، 7، 11، 101، 17977، 10619863، 6620830889، 80630964769، 228204732751، 1171432692373، 1398341745571، 10963707205259، 15285151248481، 10657331232548839، 790738119649411319، 18987964267331664557 OEISA049575

أعداد بيل الأولية[عدل]

الأعداد الأولية في التسلسل الرقمى لبيل ف 0 = 0، ف 1 = 1 ، ف ن = 2 ف ن -1 + ن ف -2.

2، 5، 29، 5741، 33461، 44560482149، 1746860020068409، 68480406462161287469، 13558774610046711780701، 4125636888562548868221559797461449 OEISA086383

الأعداد الأولية القابلة للتبديل[عدل]

أي تبادل من الأرقام العشرية هي الأولية.

2، 3، 5، 7، 11، 13، 17، 31، 37، 71، 73، 79، 97، 113، 131، 199، 311، 337، 373، 733، 919، 991، 1111111111111111111، 11111111111111111111111 OEISA003459

يبدو من المرجح أن جميع الأعداد الأولية القابلة للتبديل هو تكرارى، أي تحتوي فقط على الرقم 1.

أعداد بيرن الأولية[عدل]

الأعداد الأولية في التسلسل الرقمى لبيرن ف (0) = 3، ف (1) = 0، ف (2) = 2، ف (ن) = ف (ن -- 2) + ف (ن -- 3).

2، 3، 5، 7، 17، 29، 277، 367، 853، 14197، 43721، 1442968193، 792606555396977، 187278659180417234321، 66241160488780141071579864797 OEISA074788

أعداد بيربونت الأولية[عدل]

الشكل 2^u 3^v + 1 لبعض الأعداد الصحيحة ق ش، ت ≥ 0.

هذه أيضا أعداد أولية من الفئة 1

2، 3، 5، 7، 13، 17، 19، 37، 73، 97، 109، 163، 193، 257، 433، 487، 577، 769، 1153، 1297، 1459، 2593، 2917، 3457، 3889، 10369، 12289، 17497، 18433، 39367، 52489، 65537، 139969، 147457 OEISA005109

أعداد بيلاى الأولية[عدل]

العدد الأولى p والتي يوجد لها ن> 0 مثل أن يقسم ع ن! + 1 ون لا يقسم ع -- 1.

23، 29، 59، 61، 67، 71، 79، 83، 109، 137، 139، 149، 193، 227، 233، 239، 251، 257، 269، 271، 277، 293، 307، 311، 317، 359، 379، 383، 389، 397، 401، 419، 431، 449، 461، 463، 467، 479، 499 OEISA063980

الأعداد الأولية البدائية[عدل]

الأعداد الأولية حيث هناك المزيد من الأعداد الأولية التباديلة من بعض أو كل الأرقام العشرية أكثر من أي عدد أصغر.

2، 13، 37، 107، 113، 137، 1013، 1237، 1367، 10079 OEISA119535

الأعداد الأولية الأصلية[عدل]

في شكل ع ن # -- 1 أو ع ن # + 1.

3، 5، 7، 29، 31، 211، 2309، 2311، 30029، 200560490131، 304250263527209، 23768741896345550770650537601358309 OEISA057705 وOEISA018239 [3]

أعداد بروث الأولية[عدل]

في شكل * ك ن 2 + 1 مع الفردى وك ك <2 ن.

3، 5، 13، 17، 41، 97، 113، 193، 241، 257، 353، 449، 577، 641، 673، 769، 929، 1153، 1217، 1409، 1601، 2113، 2689، 2753، 3137، 3329، 3457، 4481، 4993، 6529، 7297، 7681، 7937، 9473، 9601، 9857 OEISA080076

أعداد فيثاغوري الأولية[عدل]

الشكل 4 ن + 1.

5، 13، 17، 29، 37، 41، 53، 61، 73، 89، 97، 101، 109، 113، 137، 149، 157، 173، 181، 193، 197، 229، 233، 241، 257، 269، 277، 281، 293، 313، 317، 337، 349، 353، 373، 389، 397، 401، 409، 421، 433، 449 OEISA002144

الأعداد الأولية الرباعية[عدل]

، ع +2، +6 ع، ع +8) كلها أولية.

(5، 7، 11، 13)، (11، 13، 17، 19)، (101، 103، 107، 109)، (191، 193، 197، 199)، (821، 823، 827، 829)، (1481، 1483، 1487، 1489)، (1871، 1873، 1877، 1879)، (2081 (2083، 2087، 2089)، (3251، 3253، 3257، 3259)، (3461، 3463، 3467، 3469)، (5651، 5653، 5657، 5659)، (9431، 9433، 9437، 9439) OEISA007530، OEISA136720، OEISA136721، OEISA090258

أعداد رامانوجان الأولية[عدل]

الأعداد الصحيحة ص ن التي هي الأصغر لإعطاء على الأقل العدد الأولى ن خ / س 2 للجميع ≥ ن خ ص (جميع الأعداد الصحيحة من هذا القبيل هي أولية).

2، 11، 17، 29، 41، 47، 59، 67، 71، 97، 101، 107، 127، 149، 151، 167، 179، 181، 227، 229، 233، 239، 241، 263، 269، 281، 307، 311، 347، 349، 367، 373، 401، 409، 419، 431، 433، 439، 461، 487، 491 OEISA104272

الأعداد الأولية المنتظمة[عدل]

الأعداد الأولية p الذي لا يقسمالفئة العددية ف من المجال السايكلوتوميك.

3، 5، 7، 11، 13، 17، 19، 23، 29، 31، 41، 43، 47، 53، 61، 71، 73، 79، 83، 89، 97، 107، 109، 113، 127، 137، 139، 151، 163، 167، 173، 179، 181، 191، 193، 197، 199، 211، 223، 227، 229، 239، 241، 251، 269، 277، 281 OEISA007703

الأعداد الأولية التكرارية[عدل]

الأعداد الأولية التي لا تحتوي سوى على الرقم العشري 1.

11، 1111111111111111111، 11111111111111111111111 OEISA004022

القادم يتكون من 317 و 1031 رقم.

الأعداد الأولية في الطبقات البقية[عدل]

لتشكيل + د ن * لإصلاح ود. كما يدعى الأعداد الأولية المتطابقة د مودولو أ.

ثلاث حالات من دخولهم الخاصة : 2 ن +1 هي الأعداد الأولية الفردية، 4 ن +1 هي الأعداد الأولية لفيثاغورس، 4 ن +3 هي الأعداد الأولية الصحيحة لغاوسي.

2 ن +1 : 3، 5، 7، 11، 13، 17، 19، 23، 29، 31، 37، 41، 43، 47، 53 OEISA065091
4 ن +1 : 5، 13، 17، 29، 37، 41، 53، 61، 73، 89، 97، 101، 109، 113، 137 OEISA002144
4 ن +3 : 3، 7، 11، 19، 23، 31، 43، 47، 59، 67، 71، 79، 83، 103، 107 OEISA002145
6 ن +1 : 7، 13، 19، 31، 37، 43، 61، 67، 73، 79، 97، 103، 109، 127، 139 OEISA002476
6 ن +5 : 5، 11، 17، 23، 29، 41، 47، 53، 59، 71، 83، 89، 101، 107، 113 OEISA007528
8 ن +1 : 17، 41، 73، 89، 97، 113، 137، 193، 233، 241، 257، 281، 313، 337، 353 OEISA007519
8 ن +3 : 3، 11، 19، 43، 59، 67، 83، 107، 131، 139، 163، 179، 211، 227، 251 OEISA007520
8 ن +5 : 5، 13، 29، 37، 53، 61، 101، 109، 149، 157، 173، 181، 197، 229، 269 OEISA007521
8 ن +7 : 7، 23، 31، 47، 71، 79، 103، 127، 151، 167، 191، 199، 223، 239، 263 OEISA007522
10 ن +1 : 11، 31، 41، 61، 71، 101، 131، 151، 181، 191، 211، 241، 251، 271، 281 OEISA030430
10 ن +3 : 3، 13، 23، 43، 53، 73، 83، 103، 113، 163، 173، 193، 223، 233، 263 OEISA030431
10 ن +7 : 7، 17، 37، 47، 67، 97، 107، 127، 137، 157، 167، 197، 227، 257، 277 OEISA030432
10 ن +9 : 19، 29، 59، 79، 89، 109، 139، 149، 179، 199، 229، 239، 269، 349، 359 OEISA030433
...

10 ن + د د = 1، 3، 7، 9) هي الأعداد الأولية المنتهية في الأرقام العشرية د.

الأعداد الأولية المبتورة لليمين[عدل]

الأعداد الأولية التي تبقى أولية عندما الرقم العشري الأخير يتم إزالتها تباعا.

2، 3، 5، 7، 23، 29، 31، 37، 53، 59، 71، 73، 79، 233، 239، 293، 311، 313، 317، 373، 379، 593، 599، 719، 733، 739، 797، 2333، 2339، 2393، 2399، 2939، 3119، 3137، 3733، 3739، 3793، 3797 OEISA024770

الأعداد الأولية الآمنة[عدل]

انظر الأعداد الأولية الآمنة. يكون p عددا أوليا آمنا إذا كان عددا أوليا وكان 2p - 1 عددا أوليا أيضا. الأعداد الأولية الآمنة الأولى هي :

5، 7، 11، 23، 47، 59، 83، 107، 167، 179، 227، 263، 347، 359، 383، 467، 479، 503، 563، 587، 719، 839، 863، 887، 983، 1019، 1187، 1283، 1307، 1319، 1367، 1439، 1487، 1523، 1619، 1823، 1907 OEISA005385

الأعداد الأولية الذاتية في القاعدة 10[عدل]

الأعداد الأولية التي لا يمكن توليدها عن طريق اي صحيح تضاف إلى مجموع هذه الأرقام العشرية.

3، 5، 7، 31، 53، 97، 211، 233، 277، 367، 389، 457، 479، 547، 569، 613، 659، 727، 839، 883، 929، 1021، 1087، 1109، 1223، 1289، 1447، 1559، 1627، 1693، 1783، 1873 OEISA006378

الأعداد الأولية المثيرة[عدل]

، ع + 6) هما الأولية.

(5،11)، (7،13)، (11،17)، (13،19)، (17،23)، (23،29)، (31،37)، (37،43)، (41، 47)، (47،53)، (53،59)، (61،67)، (67،73)، (73،79)، (83،89)، (+97103)، (+101107)، (103109)، (+107113)، (131٬137)، (151٬157)، (157163)، (167٬173)، (173179)، (191197)، (193199) OEISA023201، OEISA046117

الأعداد الأولية إسمرنديجي - ويلين[عدل]

الأعداد الأولية التي هي سلسلة من الأعداد الأولية ن الأولى المكتوبة في العشرية.

2، 23، 2357 OEISA069151

العدد الأولى الرابع لإسمرنديجي ويلين هو سلسلة من الأعداد الأولية 128 الأولى التي تنتهي مع 719.

الأعداد الأولية سوليناس[عدل]

النموذج 2 (أ) ± ± 2 ب 1، حيث 0 <ب <أ.

3، 5، 7، 11، 13 OEISA165255

أعداد صوفي جيرمين الأولية[عدل]

انظر عدد صوفي جيرمين الأولي. يكون عدد أولي ما، p، عددا أوليا لصوفي جيرمين إذا وفقط إذا كان 2p + 1 أوليا أيضا. أعداد صوفي جيرمين الأولية الأولى هي :

2، 3، 5، 11، 23، 29، 41، 53، 83، 89، 113، 131، 173، 179، 191، 233، 239، 251، 281، 293، 359، 419، 431، 443، 491، 509، 593، 641، 653، 659، 683، 719، 743، 761، 809، 911، 953 OEISA005384

الأعداد الأولية النجمة[عدل]

الشكل 6 ن (ن -- 1) + 1.

13، 37، 73، 181، 337، 433، 541، 661، 937، 1093، 2053، 2281، 2521، 3037، 3313، 5581، 5953، 6337، 6733، 7561، 7993، 8893، 10333، 10837، 11353، 12421، 12973، 13537، 15913، 18481 OEISA083577

أعداد ستيرن الأولية[عدل]

الأعداد الأولية التي ليست من مجموع عدد أولى أصغر وضعف مربع عدد صحيح غير صفري.

2، 3، 17، 137، 227، 977، 1187، 1493 OEISA042978

اعتبارا من أول يناير 2008، هذه هي أعداد ستيرن الأولية الوحيدة المعروفة، وربما الوحيدة الموجودة.

الأرقام الأولية العظمى[عدل]

الأعداد الأولية مع فهرس الأعداد الأولية في تسلسل الأعداد الأولية (2nd، 3rd، 5th ،... أولى).

3، 5، 11، 17، 31، 41، 59، 67، 83، 109، 127، 157، 179، 191، 211، 241، 277، 283، 331، 353، 367، 401، 431، 461، 509، 547، 563، 587، 599، 617، 709، 739، 773، 797، 859، 877، 919، 967، 991 OEISA006450

الأعداد الأولية الفردية العظمى[عدل]

هناك خمسة عشر عدد أولى فردى عظمى بالظبط :

2، 3، 5، 7، 11، 13، 17، 19، 23، 29، 31، 41، 47، 59، 71 OEISA002267

أعداد ثابت الأولية[عدل]

النموذج 3 * 2 ن -- 1.

2، 5، 11، 23، 47، 191، 383، 6143، 786431، 51539607551، 824633720831، 26388279066623، 108086391056891903، 55340232221128654847، 226673591177742970257407 OEISA007505

الأعداد الأولية الثلاثية[عدل]

، ع +2، ع +6) أو ، ع +4، ع +6) كلها أعداد أولية.

(5، 7، 11)، (7، 11، 13)، (11، 13، 17)، (13، 17، 19)، (17، 19، 23)، (37، 41، 43)، (41، 43، 47)، (67، 71، 73)، (97، 101، 103)، (101، 103، 107)، (103، 107، 109)، (107، 109، 113)، (191، 193، 197)، (193، 197، 199)، (223، 227، 229)، (227، 229، 233)، (277، 281، 283)، (307، 311، 313)، (311، 313، 317)، (347، 349، 353) OEISA007529، OEISA098414، OEISA098415

الأعداد الأولية التوأم[عدل]

انظر الأعداد الأولية التوأم. يكون عددان أوليان توأما إذا كان الفرق بينهما مساويا لاثنين (p و 2 + p). الأعداد الأولية التوأم الأولي هي :

(3، 5)، (5، 7)، (11، 13)، (17، 19)، (29، 31)، (41، 43)، (59، 61)، (71، 73)، (101، 103)، (107، 109)، (137، 139)، (149، 151)، (179، 181)، (191، 193)، (197، 199)، (227، 229)، (239، 241)، (269، 271)، (281، 283)، (311، 313)، (347، 349)، (419، 421)، (431، 433)، (461، 463) OEISA001359، OEISA006512

عدد علام الأولى[عدل]

أعداد علام هي الأعداد الأولية.

2، 3، 11، 13، 47، 53، 97، 131، 197، 241، 409، 431، 607، 673، 739، 751، 983، 991، 1103، 1433، 1489، 1531، 1553، 1709، 1721، 2371، 2393، 2447، 2633، 2789، 2833، 2897 OEISA068820

الأعداد الأولية الفريدة[عدل]

الأعداد الأولية p لطول الفترة التي من 1 / ع فريد من نوعه (لا يعطي أى عدد أولى آخر نفسه).

3، 11، 37، 101، 9091، 9901، 333667، 909091، 99990001، 999999000001، 9999999900000001، 909090909090909091، 1111111111111111111، 11111111111111111111111، 900900900900990990990991 OEISA040017

أعداد اغستاف الأولية[عدل]

من النموذج (2 ن + 1) / 3.

3، 11، 43، 683، 2731، 43691، 174763، 2796203، 715827883، 2932031007403، 768614336404564651، 201487636602438195784363، 845100400152152934331135470251، 56713727820156410577229101238628035243 OEISA000979

ن من القيم :

3، 5، 7، 11، 13، 17، 19، 23، 31، 43، 61، 79، 101، 127، 167، 191، 199، 313، 347، 701، 1709، 2617، 3539، 5807، 10501، 10691، 11279، 12391، 14479، 42737، 83339، 95369، 117239، 127031، 138937، 141079، 267017، 269987، 374321 OEISA000978

أعداد ويدربيرن - إثرينغتون الأولية[عدل]

أرقام ويدربيرن - إثرينغتون الأرقام هي الأولية.

2، 3، 11، 23، 983، 2179، 24631، 3626149، 253450711، 596572387 (أولية في OEISA001190

أعداد ويرفريش الأولية[عدل]

أعداد أولية P 2 الذي يقسم 2 ف -- 1—1

1093، 3511 OEISA001220

اعتبارا من أول يناير 2008، هذه هي الأعداد الأولية الوحيدة المعروفة لويرفريش.

أعداد ويلسون الأولية[عدل]

الأعداد الأولية p 2 الذي يقسم -- 1)! +1.

5، 13، 563 OEISA007540

اعتبارا من أول يناير 2008، هذه هي الأعداد الأولية الوحيدة المعروفة لويلسون.

أعداد ويلستنهولم الأولية[عدل]

الأعداد الأولية p التي ثنائية التسمية {{2p-1}\choose{p-1}} \equiv 1 \pmod{p^4}

16843، 2124679 OEISA088164

اعتبارا من أول يناير 2008، وهذه هي الأعداد الأولية الوحيدة المعروفة لويلستنهولم.

أعداد وودال الأولية[عدل]

في شكل * ن ن 2—1.

7، 23، 383، 32212254719، 2833419889721787128217599، 195845982777569926302400511، 4776913109852041418248056622882488319 OEISA050918

أنظر أيضاً[عدل]

ملاحظات[عدل]

  1. ^ Tomás اوليفيرا إي سيلفا، Goldbach حدس التحقق.
  2. ^ OEISA038136 مفقود في 5 ثنائي السطح الوزراء اعتبارا من أول يناير 2008.
  3. ^ أ ب OEISA018239 يتضمن 2 = منتج خال من يعبي 0 أول زائد 1، 2 لكن مستبعد في هذه القائمة.
  4. ^ إيريك ويستاين، Genocchi Number، ماثوورلد Mathworld (باللغة الإنكليزية).
  5. ^ انه يختلف عما إذا لام 0 = 2 يتم تضمينها في أعداد لوكاس.

الروابط الخارجية[عدل]