ملحق:قائمة تكاملات الدوال المثلثية

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث

تكاملات مثلثية تحتوي فقط على الجيب (جا)[عدل]

\int\sin ax\;dx = -\frac{1}{a}\cos ax+C\,\!
\int\sin^2 {ax}\;dx = \frac{x}{2} - \frac{1}{4a} \sin 2ax +C= \frac{x}{2} - \frac{1}{2a} \sin ax\cos ax +C\!
\int\sin a_1x\sin a_2x\;dx = \frac{\sin[(a_1-a_2)x]}{2(a_1-a_2)}-\frac{\sin[(a_1+a_2)x]}{2(a_1+a_2)}+C \qquad\mbox{(for }|a_1|\neq|a_2|\mbox{)}\,\!
\int\sin^n {ax}\;dx = -\frac{\sin^{n-1} ax\cos ax}{na} + \frac{n-1}{n}\int\sin^{n-2} ax\;dx \qquad\mbox{(for }n>0\mbox{)}\,\!
\int\frac{dx}{\sin ax} = \frac{1}{a}\ln \left|\tan\frac{ax}{2}\right|+C
\int\frac{dx}{\sin^n ax} = \frac{\cos ax}{a(1-n) \sin^{n-1} ax}+\frac{n-2}{n-1}\int\frac{dx}{\sin^{n-2}ax} \qquad\mbox{(for }n>1\mbox{)}\,\!
\int x\sin ax\;dx = \frac{\sin ax}{a^2}-\frac{x\cos ax}{a}+C\,\!
\int x^n\sin ax\;dx = -\frac{x^n}{a}\cos ax+\frac{n}{a}\int x^{n-1}\cos ax\;dx \qquad\mbox{(for }n>0\mbox{)}\,\!
\int_{\frac{-a}{2}}^{\frac{a}{2}} x^2\sin^2 {\frac{n\pi x}{a}}\;dx = \frac{a^3(n^2\pi^2-6)}{24n^2\pi^2}   \qquad\mbox{(for }n=2,4,6...\mbox{)}\,\!
\int\frac{\sin ax}{x} dx = \sum_{n=0}^\infty (-1)^n\frac{(ax)^{2n+1}}{(2n+1)\cdot (2n+1)!} +C\,\!
\int\frac{\sin ax}{x^n} dx = -\frac{\sin ax}{(n-1)x^{n-1}} + \frac{a}{n-1}\int\frac{\cos ax}{x^{n-1}} dx\,\!
\int\frac{dx}{1\pm\sin ax} = \frac{1}{a}\tan\left(\frac{ax}{2}\mp\frac{\pi}{4}\right)+C
\int\frac{x\;dx}{1+\sin ax} = \frac{x}{a}\tan\left(\frac{ax}{2} - \frac{\pi}{4}\right)+\frac{2}{a^2}\ln\left|\cos\left(\frac{ax}{2}-\frac{\pi}{4}\right)\right|+C
\int\frac{x\;dx}{1-\sin ax} = \frac{x}{a}\cot\left(\frac{\pi}{4} - \frac{ax}{2}\right)+\frac{2}{a^2}\ln\left|\sin\left(\frac{\pi}{4}-\frac{ax}{2}\right)\right|+C
\int\frac{\sin ax\;dx}{1\pm\sin ax} = \pm x+\frac{1}{a}\tan\left(\frac{\pi}{4}\mp\frac{ax}{2}\right)+C