إدارة النفايات المشعة عالية المستوى

من ويكيبيديا، الموسوعة الحرة
اذهب إلى التنقل اذهب إلى البحث
الوقود النووي المستنفد المخزن تحت الماء في موقع هانفورد

إدارة النفايات المشعة عالية المستوى تتعلق الإدارة بالنفايات المشعة بكيفية التعامل مع المواد المشعة الناتجة أثناء إنتاج الطاقة النووية والأسلحة النووية[1][2].

نبذة[عدل]

تحتوي النفايات المشعة على مزيج من النيوكليدات قصيرة العمر وطويلة العمر وكذلك النويدات غير المشعة[3]. تم الإبلاغ عن وجود حوالي 47000 طن من النفايات النووية عالية المستوى المخزنة في الولايات المتحدة الأمريكية في عام 2002[4].

العناصر الأكثر إثارة للمشاكل في الوقود المستنفد هي النبتونيوم 237 حيث عمر النصف مليوني سنة والبلوتونيوم - 239 يكون عمر النصف 24000 سنة[5]. وبالتالي تتطلب النفايات المشعة عالية المستوى معالجة متطورة وإدارتها لعزلها بنجاح عن المحيط الحيوي[6]. يستلزم هذا عادة المعالجة تليها استراتيجية إدارة طويلة الأجل تتضمن تخزين دائم للنفايات أو التخلص منها أو تحويلها إلى شكل غير سام حيث يتبع التحلل الإشعاعي قاعدة نصف العمر مما يعني أن معدل الانحلال يتناسب عكسيا مع مدة التحلل. بمعنى آخر فإن الإشعاع الصادر من نظير طويل العمر مثل اليود 129 سيكون أقل شدة بكثير من نظير قصير العمر مثل اليود 131[7].

الأهمية[عدل]

تدرس الحكومات في جميع أنحاء العالم مجموعة من خيارات إدارة النفايات والتخلص منها والتي عادة ما تنطوي على وضع جيولوجي عميق على الرغم من أنه كان هناك تقدم محدود نحو تنفيذ حلول طويلة الأجل لإدارة النفايات ويرجع ذلك جزئيا إلى أن الأطر الزمنية المعنية عند التعامل مع النفايات المشعة تتراوح ما بين 10000 إلى ملايين السنين وفقا لدراسات تستند إلى تأثير جرعات الإشعاع المقدرة[8].

الفعالية[عدل]

حدد المهندس والفيزيائي هانز ألففين شرطين أساسيين للإدارة الفعالة للنفايات المشعة عالية المستوىوهما:

  • التكوينات الجيولوجية المستقرة.
  • المؤسسات البشرية المستقرة على مدى مئات الآلاف من السنين[9].

كما يقول هانز ألففين لم تتعرض أي حضارة إنسانية معروفة لفترة طويلة ولم يتم حتى الآن اكتشاف تكوين جيولوجي ذي حجم مناسب لمستودع النفايات المشعة الدائم الذي ظل مستقرا لفترة طويلة[10].

تحليلات[عدل]

إن تجنب مواجهة المخاطر المرتبطة بإدارة النفايات المشعة قد يخلق مخاطر تعويضية ذات حجم أكبر وتعد إدارة النفايات المشعة مثالاً على تحليل السياسات التي تتطلب عناية خاصة للمخاوف الأخلاقية والتي يتم فحصها في ضوء حالة عدم اليقين والجدوى: النظر في "آثار الممارسات والتقنيات على الأجيال المقبلة"[11].

هناك نقاش حول ما الذي يجب أن يشكل أساسا علميا وهندسيا مقبول للمضي قدما في استراتيجيات التخلص من النفايات المشعة. هناك من جادلوا على أساس نماذج المحاكاة الجيوكيميائية المعقدة بأن التخلي عن التحكم في المواد المشعة في العمليات الهيدروجيولوجية عند إغلاق المستودعات يمثل خطر مقبول[12]. حيث أن ما يسمى "نظائرها الطبيعية" تمنع الحركة الجوفية للنويدات المشعة مما يجعل التخلص من النفايات المشعة في التكوينات الجيولوجية المستقرة غير ضروري ومع ذلك فإن النماذج الحالية من هذه العمليات غير محددة تجريبيا بسبب الطبيعة الجوفية لهذه العمليات في التكوينات الجيولوجية الصلبة ولم يتم التحقق من دقة نماذج محاكاة الكمبيوتر من خلال الملاحظة التجريبية وبالتأكيد ليس على فترات زمنية مكافئة لـعمر النصف المميت من النفايات المشعة عالية المستوى[13]. من ناحية أخرى يصر البعض على أن المستودعات الجيولوجية العميقة في التكوينات الجيولوجية المستقرة ضرورية وتعرض خطط الإدارة الوطنية لمختلف البلدان مجموعة متنوعة من الأساليب لحل هذا النقاش[14].

مراجع[عدل]

  1. ^ Ojovan, M. I.; Lee, W.E. (2014). An Introduction to Nuclear Waste Immobilisation. Amsterdam: Elsevier Science Publishers. p. 362. ISBN 978-0-08-099392-8.
  2. ^ "Iodine-131". stoller-eser.com. Archived from the original on 2011-07-16. Retrieved 2009-01-05.
  3. ^ "What about Iodine-129 - Half-Life is 15 Million Years". Berkeley Radiological Air and Water Monitoring Forum. University of California. 28 March 2011. Archived from the original on 13 May 2013. Retrieved 1 December 2012.
  4. ^ National Research Council (1995). Technical Bases for Yucca Mountain Standards. Washington, D.C.: National Academy Press. p. 91. ISBN 0-309-05289-0.
  5. ^ "Public Health and Environmental Radiation Protection Standards for Yucca Mountain, Nevada; Proposed Rule" (PDF). United States Environmental Protection Agency. 2005-08-22. Retrieved 2008-06-06.
  6. ^ Genevieve Fuji Johnson, Deliberative Democracy for the Future: The Case of Nuclear Waste Management in Canada, University of Toronto Press, 2008, p.9 ISBN 0-8020-9607-7
  7. ^ Bruno, Jordi, Lara Duro, and Mireia Grivé. 2001. The applicability and limitations of the geochemical models and tools used in simulating radionuclide behavior in natural waters: Lessons learned from the blind predictive modelling exercises performed in conjunction with natural analogue studies. QuantiSci S. L. Parc Tecnològic del Vallès, Spain, for Swedish Nuclear Fuel and Waste Management Co.
  8. ^ Shrader-Frechette, Kristin S. 1988. "Values and hydrogeological method: How not to site the world’s largest nuclear dump" In Planning for Changing Energy conditions, John Byrne and Daniel Rich, eds. New Brunswick, NJ: Transaction Books, p. 101 ISBN 0-88738-713-6
  9. ^ Shrader-Frechette, Kristin S. Expert judgment in assessing radwaste risks: What Nevadans should know about Yucca Mountain. Carson City: Nevada Agency for Nuclear Projects, Nuclear Waste Project, 1992 ISBN 0-7881-0683-X
  10. ^ Committee on Disposition of High-Level Radioactive Waste through Geological Isolation, Board on Radioactive Waste Management, Division on Earth and Life Studies, National Research Council. (2001). Disposition of high-level waste and spent nuclear fuel: The continuing societal and technical challenges. U.S. National Research Council. Washington, DC: National Academy Press. ISBN 0-309-07317-0.
  11. ^ McCall, A; King, S (April 30 – May 4, 2006). "Generic repository concept development and assessment for UK high-level waste and spent nuclear fuel". Proceedings of the 11th high-level radioactive waste management conference. La Grange Park, IL: American Nuclear Society: 1173–79.
  12. ^ Hebert, H. Josef. 2009. "Nuclear waste won't be going to Nevada's Yucca Mountain, Obama official says." Chicago Tribune. March 6, 2009, 4. "Archived copy". Archived from the original on 2011-03-24. Retrieved 2011-03-17. Accessed 3-6-09.
  13. ^ McCombie, Charles (April 29 – May 3, 2001). "International and regional repositories: The key questions". Proceedings of the 9th international high-level radioactive waste management conference. La Grange Park, IL: American Nuclear Society.
  14. ^ Nilsson, Karl Fredrik (December 10–11, 2007). Enlargement and integration workshop: European collaboration for the management of spent nuclear fuel and radioactive waste by technology transfer and shared facilities. Brussels: European Commission. Archived from the original on 2007-06-26. Retrieved 2008-12-27.