المحتوى هنا ينقصه الاستشهاد بمصادر، أي معلومات غير موثقة يمكن التشكيك بها وإزالتها.

إحصاء

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
Question book-new.svg
المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016)
مخطط منحني جرسي يظهر التوزع الطبيعي الذي يستخدم في العديد من التطبيقات الإحصائية

الإحصاء (بالإنجليزية: Statistics) هو أحد فروع الرياضيات الهامة ذات التطبيقات الواسعة. يهتم علم الإحصاء بجمع وتلخيص وتمثيل وايجاد استنتاجات من مجموعة البيانات المتوفرة، محاولا التغلب على مشاكل مثل عدم تجانس البيانات وتباعدها. كل هذا يجعله ذا أهمية تطبيقية واسعة في شتى مجالات العلوم من الفيزياء إلى العلوم الاجتماعية وحتى الإنسانية، كما يلعب دورا في السياسة والأعمال.

الإحصاء علم جمع ووصف وتفسيرالبيانات وبمعنى آخر صندوق الأدوات الموضوع تحت البحث التجريبي.

في تحرير البيانات، هدف العلماء لوصف فهمنا للعالم, اوصاف العلاقات المستقرة بين الظواهر الجديرة بالملاحظة على شكل نظريات أحيانا مدعوة بان تكون توضيحية(مع ذلك الواحد يمكن أن يجادل بان العلم يصف كيف تحدث الأشياء). اختراع النظرية عملية مبدعة لاعادة هيكلة المعلومات التي ضمنت في ايجاد (وقبول) النظريات، وتنتزع المعلومات القابلة للاستغلال من العالم الحقيقي. (نحن نجرد من النظريات البديهية تماما التي اشتقت بالاستنتاج المنطقي).

تاريخ[عدل]

يعتبر الإحصاء من الأمور القديمة المعروفة لدى المجتمعات، حيث يحرص القادة والزعماء والملوك على إحصاء عدد الجنود والأسلحة لخوض الحروب واستعراض القوة، كما تحرص الجماعات على إحصاء عدد أفرادها من أجل معرفة قوتها وكثرتها، وقد وردت كلمة الإحصاء ومشتقاتها في القرآن الكريم إحدى عشرة مرة، منها قوله تعالى: {وَكُلَّ شَيْءٍ أَحْصَيْناهُ كِتابا} [النبأ: 29]، كما وردت في السنة النبوية في مواضع متعددة، منها قوله صلى الله عليه وسلم: "أحصوا لي كم يلفظ الإسلام" أخرجه مسلم. وفي القرن التاسع عشر طورت أساليب وأفكار إحصائية على يد مجموعة من العلماء منهم فرانسيس يزدرو أيدجورث، وفرانسيس غالتون، وكارل بيرسون، وجورج أودني بول، وآخرون. وفي القرن العشرين تطور علم الإحصاء وعزز من ذلك حاجة صناع القرار والقادة العسكريون في الحرب العالمية الثانية للخطط الإحصائية والمزيد من الأفكار الإحصائية.

المصطلحات المفتاحية[عدل]

تنطوي المصطلحات المفتاحية لعلم الإحصاء على مفاهيم نظرية الاحتمالات بشكل أساسي :

مراحله[عدل]

الخطوة الأولى في أي عملية إحصائية هي جمع البيانات من خلال عملية الاستعيان من ضمن المجتمع الإحصائي الضخم أو من خلال تسجيل الاستجابات لمعالجة ما في تجربة (تصميم تجريبي experimental design)، أو عن طريق ملاحظة عملية متكررة مع الزمن (متسلسلات زمنية)، من ثم وضع خلاصات رقمية وتمثيلية (مخططية) graphical باستخدام ما يدعى الإحصاء الوصفي.

تُدمج الأنماط الموجودة ضمن البيانات (تنمذج) modeling لأخذ استدلالات حول مجتمعات كبيرة، لذلك يجب دراسة حجم العينة بحيث تكون ممثلة للمجتمع الإحصائي المسحوبة منه. تتم هذه العملية ضمن ما يدعى الإحصاء الاستدلالي inferential statistics ليأخذ بعين الاعتبار عشوائية وعدم دقة الملاحظات (القياسات).

غالبا ما تأخذ الاستدلالات الاحصائية شكل إجابات لأسئلة من نوع (نعم/لا) (فيما يدعى اختبار الفرضيات hypothesis testing), تقدير خاصيات عددية (تقدير estimation), التنبؤ prediction بملاحظات أو قياسات مستقبلية، وصف ارتباطات وعلاقات (ارتباط correlation)، أو نمذجة علاقات (انحدار regression) أو التفاف convolution.

تدخل مجمل العمليات والإجرائيات والفروع الإحصائية الموصوفة أعلاه في إطار ما يدعى الإحصاء التطبيقي، يقابله إحصاء رياضي mathematical statistics أو النظرية الإحصائية statistical theory وهي أحد فروع الرياضيات التطبيقية التي تستخدم نظرية الاحتمالات والتحليل الرياضي لوضع الممارسة الإحصائية على أساس نظري متين.

الإحصاء الوصفي[عدل]

يتضمن الإحصاء الوصفي الأدوات التي ابتكرت لتنظيم وعرض البيانات في نماذج سهلة الوصول، بمعنى آخر بطريقة ما لا تتجاوز الحدود المعرفية للعقل الإنساني, يتضمن قياسات الظواهر المتكررة، خلاصة الإحصاءات المتنوعة, المتوسطات المحسوبة بشكل رئيسي, بيانات الأسطر والإحصاءات تعرض باستعمال الجداول والرسوم البيانية. الوصف الإحصائي يعرض رؤيات مهمة لحدوث الظواهر المفردة ،ويشير للمشاركة بينهم ،لكن هل يمكن ليزود النتائج التي تكون القوانين المعتبرة في سياق علمي. الإحصاءات وسائل تعامل مع الاختلافات في خصائص الأشياء المتميزة، الأشياء المفردة ليست عرض بياني لمجتمع الأشياء, التي تمتلك الميزة القابلة للقياس موضع التحري, رغم تلك الاختلافات تكون نتيجة اختلاف المتغيرات الأخرى(المسيطرة والعشوائية).علمjh الفيزياء على سبيل المثال ،مهتمة بانتزاع والصياغة الرياضية للعلاقات المضبوطة، لا نترك مجال للتقلبات العشوائية، في إحصاءات مثل هذه التقلبات العشوائية مشكلة، العلاقات الاحصائية هكذا العلاقات التي تحدد النسبة المعينة للاختلاف الإحصائي.

الإحصاء الاستقرائي[عدل]

بالمقارنة مع مناطق واسعة من الفيزياء, تلاحظ العلاقات التجريبية احصائيا في العلوم الطبيعية ،وعلم الاجتماع وعلم النفس (ومواضيع أكثر انتقائية مثل الاقتصاد). العمل التجريبى في هذه الحقول ينتقل نموذجيا على قواعد التجارب أو مسوحات العينة التجريبية، اما في حالة كامل المجتمع لا يمكن أن يلاحظ اما لأسباب عملية أو اقتصادية. الاستنتاج من العينة المحددة للاشياء لسيادة الخصائص في المجتمع هدف استنتاجي أو إحصاء استقرائي, هنا التغير يكون انعكاس التباين في العينة واجراء العينة.

الإحصاء والاجراء العلمي[عدل]

اعتماد على حالة التحقيق العلمي ،البيانات مفحوصة بتغير درجات المعلومات السابقة. البيانات ستجمع لاكتشاف الظاهرة في المدخل الأول ،لكنه يمكن أن يخدم الاختيار الإحصائي(التاكيد/ النفي) الفرضيات حول تركيب الخاصة موضع التحري. هكذا، الإحصاء يطبق في كل مراحل العملية العلمية, حيثما الظواهر القابلة للقياس معقدة. هنا مفهومنا عام بما فيه الكفاية لاحاطة تشكيلة واسعة من المقترحات العلمية المثيرة. نأخذ على سبيل المثال افتراح نحلة طنانة تطير، بحساب عدد الحوادث في أماكن مختلفة، نحدد حدوث الظاهرة. على هذه القاعدة، نحاول استنتاج إمكانية مصادفة نحلة, تحت الظروف المعينة (مثال يوم صيفي ممطر في برلين).

السلسلة الاحصائية[عدل]

في تسجيل البيانات نولد السلسلة الاحصائية تدعى السلسلة الأصلية الغير المنجزة بالبيانات الخام. نعطي مستوى مقياس ملائم (على الأقل مقياس ترتيبي), نستطيع تصنيف البيانات الخام وهكذا نخلق سلسلة منظمة.

جمعت البيانات في نفس النقطة الزمنية أو بنفس الفترة الزمنية على عناصر مختلفة تدعى بيانات القسم المشترك

جمعت البيانات عند نقاط مختلفة من الزمن ،أو لفترات مختلفة من الزمن على نفس العنصر، تدعى بيانات السلاسل الزمنية. ان سلسلة المشاهدات مرتبة على طول الزمن.

التكرار[عدل]

عدد المشاهدات التي تتطابق لفئة معطى تدعى التكرار.

الفئات مبينة لتلخيص البيانات المستمرة أو شبه المستمرة بواسطة التكرارات في البيانات المنقطعة ينظم الواحد التلاقي أو مايسمى بالروابط، مشاهدتين أو أكثر تأخذ على نفس القيمة، لهذا لاتتطلب البيانات المنفصلة تبويب لتحسب التكرارات.

التكرار المطلق[عدل]

حساب عدد المشاهدات التي تأخذ على قيمة معينة ينتج التكرار المطلق :

Mmengjavaimg36.gif

عندما تبوب البيانات التكرارات المطلقة للفئات محسوبة على الشكل التالي :

Mmengjavaimg37.gif

الخواص

Mmengjavaimg38.gif

Mmengjavaimg39.gif

التكرار النسبي[عدل]

Mmengjavaimg40.gif

تدعى نسبة المشاهدات التي تتأخذ على قيمة معينة، أو تتطابق مع فئة محددة بالتكرار النسبي. التكرار المطلق المنتج على العدد الإجمالي للمشاهدات

الخواص:

Mmengjavaimg41.gif

Mmengjavaimg42.gif

التوزيع التكراري[عدل]

بتوحيد تكرارات الفئة للبيانات المبوبة بأعراض فئتهم الخاصة, جعلت التكرارات لفئات أحجام مختلفة للمقارنة، يمكن تجميع التكرارات الناتجة لتشكيل لتوزيع التكراري.

Mmengjavaimg44.gifMmengjavaimg43.gif

Mmengjavaimg46.gif Mmengjavaimg45.gif

حيث Mmengjavaimg47.gif حدود الفئة الدنيا والعليا.

انظر أيضا[عدل]

صفحات ذات صلة[عدل]