المبرهنة الأساسية في الجبر

من ويكيبيديا، الموسوعة الحرة
اذهب إلى التنقل اذهب إلى البحث
Jean Le Rond d'Alembert, by French school.jpg

المبرهنة الأساسية في الجبر (بالإنجليزية: Fundamental theorem of algebra)‏ هي مبرهنة رياضية تنص على أن كل حدودية من الدرجة الأولى فما فوق (أي أنها ليست دالة ثابتة) ذات متغير واحد، بمعاملات من فئة الأعداد المركبة ؛ لها على الأقل جذر واحد في .[1][2][3] بصيغة أخرى مجموعة الأعداد المركبة هي مغلقة جبريا.

قد تعرف هذه المبرهنة باسم نظرية ألمبيرت-غاوس.

التاريخ[عدل]

نشر عالم الرياضيات الفرنسي ألبرت جيرارد كتابا في هذا المجال عام 1629، عنوانه الاختراع الجديد في الجبر. زعم ألبرت جيرارد في هذا الكتاب أن متعددة حدود من الدرجة n عدد أصفارها يساوي حتما n.

يستنتج من المبرهنة الأساسية في الجبر أن كل حدودية ذات معاملات حقيقية يمكن أن تكتب جداءا لحدوديات بمعاملات حقيقية ذات الدرجة الأولى أو الدرجة الثانية. في عام 1702، زعم لايبنتس أن حدودية على شكل x4 + a4 حيث a عدد حقيقي مختلف عن الصفر، لا يمكن أن تكتب على هذا الشكل. فيما بعد، زعم نيكولاس بيرنولي نفس الشيء بالنسبة إلى الحدودية x4 − 4x3 + 2x2 + 4x + 4. ولكنه تلقى رسالة من أويلر عام 1742، مبينة أن حدودية بيرنولي تساوي ما يلي

حيث . كتب أويلر أيضا في رسالته ما يلي

لاغيا بذلك قول لايبنتس.


لتبسيط صيغة حلول المعادلات من الدرجة الثالثة أو الرابعة، اخترعت الأعداد المركبة. وتبين هذه المبرهنة أن هذه الأعداد كافية لوصف حلول باقي المعادلات الجبرية.

انظر إلى مبرهنة بويزو وإلى ألكسندر أوستروفسكي.

البراهين[عدل]

كل البراهين المقدمة أسفله تعتمد على التحليل أو على الأقل على المفهوم الطوبولوجي لاستمرار الدوال الحقيقية أو العقدية.

البرهان باستعمال التحليل العقدي[عدل]

انظر إلى مبرهنة روشي.

البرهان باستعمال الطوبولوجيا[عدل]

البرهان باستعمال الجبر[عدل]

انظر إلى مبرهنة القيمة الوسطية.

  • كل حدودية درجتها فردية ومعاملاتها أعداد حقيقية، تملك على الأقل صفرا واحدا حقيقيا.
  • كل عدد حقيقي غير منعدم موجب يمل جذرا مربعا.

البرهان باستعمال الهندسة[عدل]

انظر أيضا[عدل]

مراجع[عدل]

  1. ^ "معلومات عن المبرهنة الأساسية في الجبر على موقع thes.bncf.firenze.sbn.it". thes.bncf.firenze.sbn.it. مؤرشف من الأصل في 1 أبريل 2019. الوسيط |CitationClass= تم تجاهله (مساعدة)
  2. ^ "معلومات عن المبرهنة الأساسية في الجبر على موقع mathworld.wolfram.com". mathworld.wolfram.com. مؤرشف من الأصل في 26 مارس 2019. الوسيط |CitationClass= تم تجاهله (مساعدة)
  3. ^ "معلومات عن المبرهنة الأساسية في الجبر على موقع universalis.fr". universalis.fr. مؤرشف من الأصل في 21 يوليو 2019. الوسيط |CitationClass= تم تجاهله (مساعدة)


وصلات خارجية[عدل]



Nuvola apps edu mathematics-ar.svg
هذه بذرة مقالة عن الرياضيات او موضوع متعلق بها بحاجة للتوسيع. شارك في تحريرها.