المحتوى هنا ينقصه الاستشهاد بمصادر، أي معلومات غير موثقة يمكن التشكيك بها وإزالتها.
يرجى مراجعة هذه المقالة وإزالة وسم المقالات غير المراجعة، ووسمها بوسوم الصيانة المُناسبة.

المبرهنة الأساسية في الجبر

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
Question book-new.svg
المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016)
N write.svg
هذه مقالة جديدة غير مُراجعة. ينبغي أن يُزال هذا القالب بعد أن يُراجعها محررٌ ما عدا الذي أنشأها؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المُناسبة. (أكتوبر 2005)

المبرهنة الأساسية في الجبر (بالإنجليزية: Fundamental theorem of algebra) هي مبرهنة رياضية تنص على أن كل حدودية من الدرجة الأولى أو أكبر (أي أنها ليست دالة ثابتة) ذات متغير واحد، بمعاملات من فئة الأعداد المركبة \mathbb C؛ لها على الأقل جذر واحد في \mathbb C. بصيغة أخرى مجموعة الأعداد المركبة \mathbb C هي مغلقة جبريا.

قد تعرف هذه المبرهنة باسم نظرية ألمبيرت-غاوس.

التاريخ[عدل]

لتبسيط صيغة حلول المعادلات من الدرجة الثالثة أو الرابعة, اخترعت الأعداد المركبة. وتبين هذه المبرهنة أن هذه الأعداد كافية لوصف حلول باقي المعادلات الجبرية.

انظر إلى مبرهنة بويزو وإلى ألكسندر أوستروفسكي.

البراهين[عدل]

كل البراهين المقدمة أسفله تعتمد على التحليل أو على الأقل على المفهوم الطوبولوجي لاستمرار الدوال الحقيقية أو العقدية.

براهين باستعمال التحليل العقدي[عدل]

انظر إلى قرص (رياضيات).

براهين باستعمال الطوبولوجيا[عدل]

براهين جبرية[عدل]

انظر أيضا[عدل]

مراجع[عدل]

مراجع تاريخية[عدل]

مراجع عصرية[عدل]

وصلات خارجية[عدل]

Nuvola apps edu mathematics-ar.svg
هذه بذرة مقالة عن الرياضيات بحاجة للتوسيع. شارك في تحريرها.