يفتقر محتوى هذه المقالة إلى مصادر موثوقة

انحراف مجموع مقلوبات الأعداد الأولية

من ويكيبيديا، الموسوعة الحرة
اذهب إلى التنقل اذهب إلى البحث
Question book-new.svg
تعرَّف على طريقة التعامل مع هذه المسألة من أجل إزالة هذا القالب.يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوقة. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016)

مجموع مقلوبات الأعداد الأولية هو متسلسلة متباعدة حيث أن:

كان ليونارد أويلر قد برهن على ذلك في 1737، كما أنها تعزيز لمبرهنة إقليدس في القرن الثالث الميلادي التي تنص على أن هناك عدد لا منته من الأعداد الأولية.

يوجد العديد من البراهين على نتيجة أويلر بما فيها الحد الأدنى للمجاميع الجزئية الذي ينص على:

لجميع الأعداد الطبيعية n.

المتسلسلات المتناسقة[عدل]

البرهان الأول[عدل]

صيغة مبسطة للبرهان أعلاه[عدل]

وبما أنه

فإن ex > 1 + x و (x > ln(1 + x. وهكذا :

ومنه فإن متباعد. ولكن

حيث pi هو العدد الأولي من الرتبة i. وبالتالي متسلسلة متباعدة.

البرهان الثاني[عدل]

البرهان الثالث[عدل]

البرهان الرابع[عدل]

انظر أيضا[عدل]

مراجع[عدل]

وصلات خارجية[عدل]


Lebesgue Icon.svg
هذه بذرة مقالة عن التحليل الرياضي بحاجة للتوسيع. شارك في تحريرها.