تحويل ليجاندر

من ويكيبيديا، الموسوعة الحرة
اذهب إلى التنقل اذهب إلى البحث
رسم يوضح تحويل ليجاندر (انظر معناه الهندسي).

تحويل ليجاندر في الرياضيات و الفيزياء (بالإنجليزية:Legendre Transformation ) هو تحويل رياضي ينتسب إلى عالم الرياضيات أدريان ليجاندر يختص بتحويل التماس ويشكل طريقة حسابية هامة لتحويل المتغيرات في الدوال الرياضية .[1] فهو يحول دالة من نوع إلى دالة

حيث ينشأ المتغير من مشتقة الدالة .

أي أن :

وبالعكس:

ويمكن كتابة معادلات قبل وبعد التحويل كالآتي:

استنباطه[عدل]

الغرض من تحويل ليجاندر هو تغيير اعتماد دالة على المتغير إلى اعتمادها على متغير آخر حيث :

فعندما نصيغ الدالة المعتمدة على

,

يصبح الدالة أيضا معتمدة على المتغير .

وعندما نقوم بمعلية التفاضل الكلي ل نحصل على:

.

وبالمقارنة ب و

نحصل على :

.

أي أن :

,

وبعد إجراء التكامل نحصل على:

.

وتسمى الدالة دالة ليجاندر المحولة من الدالة . ولا أهمية لإشارة الدالة

لذلك يمكننا كتابة

oder

ويعتمد اختيار الإشارة على المعني الفيزيائي للدالة .

معناه الهندسي[عدل]

سنوضح تحويل ليجاندر بواسطة الرسم المرسوم أعلاه : يمكن رسم المنحنى الأحمر عن طريق استبدال كل نقاطه بتحويلات ليجاندر التي تعطينا عددا كبيرا من المماسات التي تحيط وتمس المنحنى الأحمر. وهذا ما تقوم به تحيلات ليجاندر . فالدالة الناتجة ترتب ميل الممسات لكل نقطة بحسب تقاطع خط التماس مع المحور Y . إذاّ فتلك الممسات تصف المنحني وصفا كاملا - ولكن باستخدام إحداثية أخرى ، وهي بدلا من .

في حالة عدة متغيرات[عدل]

يتغير اعتماد دالة تعتمد على المتغير إلى متغير آخر عن طريق التفاضل الجزئي للدالة بالنسبة إلى كالآتي:

.

ويمثل فيها الميل الهندسي في الاتجاه x من الدالة .

ذلك نتحدث عن تحويل ليجااندر بأنه "تحويل مماسات " . وتسمى الدالة

"دالة ليجراند المحولة" .

ويمكننا استنباط دالة ليجراند المحولة كالآتي: يمكن كتابة الدالة على الصورة :

وإذا عرّفنا , حصلنا على دالة ليجراند المحولة :

.

في أغلب أحوال توضع ونحصل على :

.

بالنسبة إلى التعريف الأخير يكون الجزء لنقطة المماس على مع اتخاذ المستوي هي دالة ليجراند المحولة . وتوصف الدالات في ذلك المستوي بأنها "مقطع المحور" .

أي ينشأ تبديل المتغيرات من خلال طرح حاصل ضرب الإحداثيات الأولية و الجديدة من الدالة الأصلية :

.

ويبدو ذلك واضحا عند مشاهدة إلى التفاضل الكلي لدالة ليجاندر المحولة :

.

تطبيقاته[عدل]

يطبق تحويل ليجاندر في الفيزياء في مسائل الترموديناميكا الإحصائية ، مثل تحويل معادلات الانتقال بين الجهود الترموديناميكية تحت طروف معينة وكذلك عند الانتقال من دالة ليجاندر إلى ميكانيك هاميلتون أو إلى ميكانيك لاغرانج .

وفي علم الحركة الحرارية نستخدمها مع اختيار الإشارة السفلى ، أي بوضع ().

ويقوم تحويل ليجاندر - وكذلك تحويل نقاط الممسات بصفة عامة - بوظية هامة ي الميكانيكا و حساب التغيرات وفي نظرية المعادلات التفاضلية من الدرجة الأولى . وعند استخدام دالة ليجراندر المحولة في الميكانيكا نستخدم الإشارة العليا في المعادلة () طبقا للمتفق عليه.

مثـال دالة هاميلتون[عدل]

في الميكانيكا نستنبط معادلة هاميلتون من معادلة لاغرانج عن طريق استخدام تحويل ليجاندر:

وفي الترموديناميكا يمكننا عن طريق تحويل ليجاندر استنباط الجهد الترمويناميكي من المعادلات الأساسية للترموديناميكا. عندئذ يمكن الانتقال من الطاقة الداخلية U (وهي تعتمد على الإنتروبيا) S إلى طاقة هيلمهولتز F التي تعتمد على درجة الحرارة T:

وهنا يختص تفاضل المعادلة (U(S,V,N بانسبة لإنتروبيا S, حيث نضع كلا من V و N كثوابت .

بالمثل نستخدمها عند دراسة جهد ترموديناميكي و تحوله إلى جهد آخر ، مثلما يحدث عند الانتقال من الإنثالبي H إلى طاقة جيبس G:

وبالمثل نستطيع الحصول على جهود ترموديناميكية أخرى أننا عن طريق تحويل ليجاندر نستطيع الانتقال إلى إحداثيات معممة والتي عن طريقها يمكننا استبدالها بالقوة الترموديناميكية المقترنة.

أمثلة الدالة الأسية[عدل]

رسم الرسم البياني للدالة ex بخط أحمر ، ورسمت دالة تحويل ليجاندر لها بنقاط زرقاء .

الدالة الأسية ex

لها دالة تحويل ليجاندر  x ln x − x&nbsp حيث أن مشتقاتها الأولى ex و  ln x معكوسة بالنسبة لبعضها . وهذا يبين أن ليس من الضروري أن يتفق الحيزين الرياضييين للدالتين مع بعضهما .

كذلك بالنسبة إلى الدالة التربيعية :

حيث A مصفوف متناظر غير متغير (مصفوف n-في-n) ودالة تحويل ليجاندر له هي:

مراجع[عدل]

  1. ^ "معلومات عن تحويل ليجاندر على موقع mathworld.wolfram.com". mathworld.wolfram.com. 

انظر أيضا[عدل]