المحتوى هنا ينقصه الاستشهاد بمصادر، أي معلومات غير موثقة يمكن التشكيك بها وإزالتها.
هذه المقالة يتيمة. ساعد بإضافة وصلة إليها في مقالة متعلقة بها
يرجى مراجعة هذه المقالة وإزالة وسم المقالات غير المراجعة، ووسمها بوسوم الصيانة المُناسبة.

تعدد الأبعاد المتساوي

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
Question book-new.svg
المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016)
N write.svg
هذه مقالة جديدة غير مُراجعة. ينبغي أن يُزال هذا القالب بعد أن يُراجعها محررٌ ما عدا الذي أنشأها؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المُناسبة. (يوليو 2013)

في الرياضيات، وبالأخص في الطوبولوجيا، يعد تعدد الأبعاد المتساوي خاصية للفضاء حيث يكون البعد المحلي هو نفسه في كل مكان.

ويُسمى الفضاء الطوبولوجي X متساوي الأبعاد إذا كان p لكل النقاط في X البعد عند p أي، أن البعد  p(X) يكون ثابتًا. ويعتبر الفضاء الإقليديسي مثالاً للفضاء متساوي البعد. ويترك الاتحاد المنفصل لفضاءين X وY (كفضاء طوبولوجي) مختلفي البعد مثالاً للفضاء غير متساوي البعد.

ويعتبر الصنف الجبري الذي تكون حلقة الإحداثي الخاصة به حلقة كوهن ماكولاي متساوي الأبعاد.

Midori Extension.svg
هذه بذرة مقالة بحاجة للتوسيع. شارك في تحريرها.