هذه المقالة أو بعض مقاطعها بحاجة لزيادة وتحسين المصادر.

حذف غاوسي

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
Question book-new.svg
تحتاج هذه المقالة أو المقطع إلى مصادر ومراجع إضافية لتحسين وثوقيتها. قد ترد فيها أفكار ومعلومات من مصادر معتمدة دون ذكرها. رجاء، ساعد في تطوير هذه المقالة بإدراج المصادر المناسبة. (ديسمبر 2017)

في الجبر الخطي، الحذف الغاوسي (بالإنجليزية: Gaussian elimination) خوارزمية مفيدة لحل منظومات من المعادلات الخطية وإيجاد رتبة مصفوفة وحساب معكوس مصفوفة مربعة انعكاسية.[1][2] تم إعطاء هذا الاسم تقديرا للرياضياتي الألماني كارل فريدريك غاوس. يتم تطبيق عمليات الصف الأساسية لتخفيض المصفوفة على صورة مصفوفة مثلثية. يمكن تعميم هذه الخوارزمية باستخدام حذف غاوس جوردان، لتخفيض المصفوفة إلى صورة مصفوفة مثلثية مخفضة ومع ذلك فإن استعمال الحذف الغاوسي بمفرده كاف لأي تطبيق.

مثال[عدل]

لنفرض أن الغرض هو إيجاد ووصف الحل أو الحلول الممكنة إذا كان أي من نظام المعادلات الخطية التالية:

تكون الخوارزمية كما يلي: إعزل عن جميع المعادلات تحت , ومن ثم إعزل عن جميع المعادلات تحت . هذا سيجعل النظام على صورة مثلثية. حينئذ، باستعمال التعويض الخلفي، يمكن حل كل واحدة غير معلومة.

في هذا المثال سوف يتم عزل عن بإضافة إلى , كما يتم عزل عن بإضافة إلى . بشكل رسمي:

والنتيجة تكون:

والآن بعزل عن بإضافة إلى:

تصبح النتيجة:

هذه النتيجة هي نظام معادلات خطية بالصورة المثلثية، وبالتالي يكون الجزء الأول من الخوارزمية قد اكتمل.

القسم الثاني وهو التعويض الخلفي. يتكون من حل المجاهيل في ترتيب عكسي. وعليه يمكن بسهولة ملاحظة أن

وعليه, يمكن تعويضها في , والتي يمكن حلها بسهولة لإيجاد

ثانيا, و يمكن تعويضها , والتي يمكن حلها لإيجاد

وبالتالي تم حل النظام.

تطبيقات[عدل]

انظر إلى نظام معادلات خطية.

إنظر أيضاً[عدل]

مراجع[عدل]

  1. ^ Fang، Xin Gui؛ Havas، George (1997). "On the worst-case complexity of integer Gaussian elimination" (PDF). Proceedings of the 1997 international symposium on Symbolic and algebraic computation. ISSAC '97. Kihei, Maui, Hawaii, United States: ACM. صفحات 28–31. ISBN 0-89791-875-4. doi:10.1145/258726.258740. 
  2. ^ Timothy Gowers؛ June Barrow-Green؛ Imre Leader (8 September 2008). The Princeton Companion to Mathematics. Princeton University Press. صفحة 607. ISBN 978-0-691-11880-2. 


Nuvola apps edu mathematics-ar.svg
هذه بذرة مقالة عن الرياضيات بحاجة للتوسيع. شارك في تحريرها.