تحليل عدد صحيح إلى عوامل: الفرق بين النسختين

من ويكيبيديا، الموسوعة الحرة
[نسخة منشورة][نسخة منشورة]
تم حذف المحتوى تمت إضافة المحتوى
سطر 47: سطر 47:


=== التحليل باستعمال منحنى لنسترا الإهليلجي ===
=== التحليل باستعمال منحنى لنسترا الإهليلجي ===
انظر إلى [[تعميل عدد صحيح باستعمال منحنى لنسترا الإهليلجي]].
انظر إلى [[تحليل عدد صحيح باستعمال منحنى لنسترا الإهليلجي]].


== تقارب المربع ==
== تقارب المربع ==

نسخة 16:55، 18 مارس 2015

مثال توضيحي لتحليل عدد صحيح،
أي أن 864 = 25 × 33.

في الرياضيات التحليل إلى العوامل[1] أو تحليل العدد الصحيح هو عملية تفكيكه إلى جداء عوامله الأولية، أي كتابة هذا العدد على شكل جداء أعداد أولية، بحيث يكون حاصل ضربها مساوٍ للعدد الأصلي. مثلا: تحليل العدد 45 هو 3·3·5 أي 32·5.

أمثلة أخرى:

11 = 11
25 = 5 × 5 = 52
125 = 5 × 5 × 5 = 53
360 = 2 × 2 × 2 × 3 × 3 × 5 = 23 × 32 × 5
1001 = 7 × 11 × 13
1010021 = 19 × 53 × 1003

إذن التفكيك دائما وحيد، وارتباطا مع المبرهنة الأساسية في الحساب. لهذه المعضلة أهمية كبيرة في الرياضيات وفي التشفير وفي نظرية التعقيد وفي الحساب الكمي.

التفكيك إلى أعداد أولية

. 45 = 32·5 قواسم عدد ما تستنتج من تفكيك هذا العدد. مثلا يعني أن قواسم 45 هي: 30·50, 30·51, 31·50, 31·51, 32·50, و 32·51, أو 1, 5, 3, 15, 9, و 45.

تطبيقات

إذا أخدنا عددين أوليين كبيرين (عدد أرقامهما يفوق 100 رقم) نلاحظ أنه من السهل جدا حساب حاصل ضربهما. لكن العكس صعب جدا يعني أن تفكيك حاصل الضرب الناتج في وقت حدودي غير معروف لحد الآن. هذا المشكل يطبق في الأنظمة الحديثة في مجال تشفير كلمات المرور وغيرها من المعطيات الحساسة. وفي حالة اكتشاف خوارزمية حدودية لحل مشكل التفكيك, ستكون بعض تقنيات التشفير في وضعية صعبة.

بعض خوارزميات التحليل

هناك طرق عديدة تستعمل لتحليل الأعداد الصحيحة، خصوصا عندما يكون العدد كبيرا.

القسمات المتتابعة

تتم بقسمة العدد على التوالي على الأعداد الأولية قسمات تامة والتوقف عند الوصول إلى خارج مساو للعدد 1, أو لعدد أولي.
مثال:
لتحليل العدد الصحيح 180

العدد وناتج القسمة عدد أولي مقسوم عليه
180 2
90 2
45 3
15 3
5 5
1

أي أن 180 = 22·32·51

التحليل باستعمال منحنى لنسترا الإهليلجي

انظر إلى تحليل عدد صحيح باستعمال منحنى لنسترا الإهليلجي.

تقارب المربع

لتفكيك عدد, يتم الاستعانة بمفهوم تقارب المربع, فتفكيك العدد a يرجع إلى إيجاد عددين x و y من مجموعة الأعداد الصحيحة الطبيعية، يحققان المعادلة الآتية: x²+a=y². ويكون (a =(x+y)(x-y

تحليل فوريير

السؤال الآن متى نستخدم تحويل فوريير ؟ للدوال غير الدورية. f (t) = F (w). عندما نؤثر بالتحويل نلاحظ أن النطاق اختلف من t إلى w وعند التعويض بحدود التكامل في t نلاحظ أنه يعطي دالة في w t w لو أن النطاق الأول مثلا بها X يكون النطاق الثاني 1/x

وهناك شرط أن هناك شرط كافي للحصول على تحويل فوريير ولكن ليس بالضروري لوجود تحويل فوريير وهذا الشرط هو أن التكامل من سالب ما لا نهاية إلى موجب ما لا نهاية بالنسبة للقيمة المطلقة للدالة f(t) بالنسبة للـ t أصغر من مالا نهاية

انظر أيضا

  1. ^ قاموس المورد، البعلكي، بيروت، لبنان.