ضيائية صوتية: الفرق بين النسختين

من ويكيبيديا، الموسوعة الحرة
[نسخة منشورة][نسخة منشورة]
تم حذف المحتوى تمت إضافة المحتوى
الرجوع عن تعديلين معلقين من 154.121.251.172 إلى نسخة 29779602 من JarBot.
JarBot (نقاش | مساهمات)
ط بوت:تبديل قالب
سطر 102: سطر 102:
|url = http://philica.com/display_article.php?article_id=19
|url = http://philica.com/display_article.php?article_id=19
}} This article was created in 1996 together with the alternative theory; both were seen by Ms Eberlein. It contains many references to the crucial experimental results in this field.
}} This article was created in 1996 together with the alternative theory; both were seen by Ms Eberlein. It contains many references to the crucial experimental results in this field.
{{معرفات مركب كيميائي}}
{{معرفات كيميائية}}
{{شريط بوابات|فيزياء}}
{{شريط بوابات|فيزياء}}



نسخة 08:49، 28 أغسطس 2018

الضيائية الصوتية (بالإنجليزية: Sonoluminescence)‏ هي ظاهرة انبعاث ومضات ضوئية من فقاعات غازية تقوم بالانخساف في وسط سائل، تحت تأثير موجات صوتية. وهي تجلب اهتمام الفيزيائيين في كون هذه الظروف تترافق مع تركيز عالي للطاقة، لفترة وجيزة من الزمن، يمكن أن تتحقق ببداية انصهار نووي حراري. ولكن هذا الأمر ما زال محل اختلاف.

نظرة عامة

ضيائية صوتية مدتها 10 ثوان من انهيار فقاعة مستحثة بموجات فوق صوتية.

يمكن إحداث الضيائية الصوتية بواسطة موجات انضغاطية، تكون ذات قوة كافية لإحداث انخساف سريع لفجوة وسط سائل. هذه الفجوة يمكن أن تكون موجودة سلفًا في شكل فقاعة غازية، أو يمكن إحداثها بعملية تسمى التكهف. في ظروف المختبر، يمكن جعل الإشعاع الضوئي ثابتًا، وذلك بترك الفجوة تتوسع ثم تنهار دوريًا، حيث تنبعث منها ومضات مع كل انهيار. ولكي يتحقق هذا، علينا إنشاء موجة صوتية دائمة داخل السائل. ويجب أن يظل الضغط داخل الفقاعة عند مضاد عقدة الموجة الصوتية الدائمة. يختلف تردد الرنين مع شكل وحجم المستوعب الذي توجد به الفقاعة.

إن حركة تمدد الفقاعة وتقلصها وًّصّفت لاحقًا من قبل عالمين، بمعادلة رياضية سميت باسميهمها "Rayleigh–Plesset equation" :

تفسير الظاهرة

لا تزال الظاهرة غير مفسرة جيدًا إلى الآن، فلا نملك سوى تفاسير مقترحة للظاهرة. بعض التفاسير يعزو الإشعاع إلى الحرارة، وأخرى إلى ظاهرة الضيائية الاحتكاكية [الإنجليزية]، وهي ظاهرة يتولد فيها الضوء نتيجة تحطم الروابط الكيميائية في جزيئات المواد، ويوجد تفاسير أخرى معتمدة على الكهرطيسية الكلاسيكية وأخرى إلى ظاهرة نفق ميكانيكا الكم أو النفق الكمومي. وتشمل بعض التفاسير ظاهرة أشعة انكباح وتفاسير أخرى عزت الظاهرة إلى ظواهر الضوء الكوانتي، وكذلك ظاهرة الانفراغ الهالي ( نسبة إلى هالة الشمس)

من اليسار إلى اليمين: ظهور فقاعة، التوسع البطيء، تقلص سريع ومفاجئ، إشعاع الضوء

تفسير مهم

في عام 2002 نشر ثلاثة باحثين هم M. Brenner, S. Hilgenfeldt, and D. Lohse ،ورقة بحثية من 60 صفحة، أشارت إلى دور محتمل للغازات النبيلة في حدوث الإضاءة، فمن المعلوم أن الهواء يحوي طبيعيًا على نسبة ضئيلة من الغازات النبيلة، تلك النسبة على صغرها كافية لإحداث الإشعاع الضوئي، إذ ان الفقاعة وبسبب سلسلة من التفاعلات الكيميائية المرافقة لعملية توسع الفقاعة وتقلصها المتكرر، ستفرغ -حسب التفسير- من الأوكسجين والنتروجين الموجود داخلها، فلا يتبقى سوى الغازات النبيلة. وفي ظاهرة شبيهة بالتي تحدث في أجهزة الإنارة -الفلاش- المعتمدة على غاز الأرغون مثلاً، يحدث الإشعاع الضوئي داخل الفقاعة أثناء انهيار الفقاعة، يولد الماء المحيط بها من كل ناحية، ضغطًا وحرارة شديدين، إذ تصل درجة الحرارة في الفقاعة نحو من 10000 كلفن، هذه الحرارة ستأيِّن نسبة قليلة من الغاز النبيل الموجود في الفقاعة، وكمية الغاز النبيل المتأين تلك صغيرة كفاية لأن تبقي الفقاعة شفافة، متيحة المجال لحدوث إشعاع ضوئي حجمي داخل الفقاعة، وسطحي على سطحها، ومدة الإشعاع السطحي تعتمد على عدة عوامل منها طول موجة الضوء المنبعث، حيث تسبب الإلكترونات المتأينة ما يعرف بـ أشعة انكباح نتيجة تفاعلها مع ذرات الغاز المعتدلة المتبقية في الفقاعة، وعندما تنخفض طاقة الموجة المشعَّة، تعود الإلكترونات لتتحدد مع ذراتها ممهدة لتكرار تسلسل الأحداث مرة أخرى حيث يحدث الإشعاع الضوئي بتواتر زمني شبه ثابت. ومما يثير الاهتمام هنا، أن النتائج التجريبية تطابقت إلى حد معقول مع الحسابات النظرية، بحيث يمكن أن تعزى الفروقات إلى بعض التبسيطات والتقريبات الحسابية، مما يزيد من أسهم هذا التفسير مقارنة مع تفاسير أخرى.

التفسير الكوانتي

فرضية مثيرة وغريبة اقترحها الفيزيائي Julian Schwinger وهي احتمالية التفسير اعتمادًا على فرضية إشعاع كازمير، وهي تقترح أن الإشعاع الصوتضوئي ربما يكون قد تولد بواسطة الفراغ داخل الفقاعة في عملية مشابهة للإشعاع هوكينغ المتولد في أفق الحدث في الثقوب السوداء، وطاقة الفراغ هذه جاءت من النظرية الكوانتية والتي تفترض أن الفراغ يحوي على جسيمات افتراضية، وعليه فإن التآثر السريع بين الماء والفراغ داخل الفقاعة، سيحول الفوتونات التخيلية الموجود في الفراغ داخل الفقاعة إلى فوتونات حقيقية، وإن صح هذا التفسير على غرابته، سيكون أول دليل تجريبي على إشعاع الفراغ الكوانتي.

الانصهار النووي البارد

إن الحرارة العالية داخل الفقاعة حثت أحد العلماء "Rusi Taleyarkhan" لاقتراح الانصهار النووري البارد كتفسير لتلك الظاهرة، إذ تنصر بعض الذرات المتمركزة في مركز الفقاعة مسببة الإشعاع الضوئي الملحوظ، و بشّر العالم بأنهم على أعتاب اكتشاف طاقة نظيفة جديدة لاتنضب، إلا أن الورقة التي نشرها لم تحظى بقبول المجتمع العلمي.

اقرأ أيضًا

مراجع

  • H. Frenzel and H. Schultes (1934). "Luminescenz im ultraschallbeschickten Wasser". Z. Phys. Chem. ج. B27: 421.
  • Gaitan، D. F. (يونيو 1992). "Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble". The Journal of the Acoustical Society of America. ج. 91 ع. 6: 3166–3183. Bibcode:1992ASAJ...91.3166G. DOI:10.1121/1.402855. {{استشهاد بدورية محكمة}}: الوسيط غير المعروف |coauthors= تم تجاهله يقترح استخدام |author= (مساعدة)
  • Brenner، Michael P. (13 مايو 2002). "Single bubble sonoluminescence" (PDF). Reviews of Modern Physics. The American Physical Society. ج. 74 ع. 2: 425–484. Bibcode:2002RvMP...74..425B. DOI:10.1103/RevModPhys.74.425. اطلع عليه بتاريخ 2008-05-27. {{استشهاد بدورية محكمة}}: الوسيط غير المعروف |coauthors= تم تجاهله يقترح استخدام |author= (مساعدة)
  • Taleyarkhan، R. P. (8 مارس 2002). "Evidence for Nuclear Emissions During Acoustic Cavitation". Science. ج. 295 ع. 1868. Bibcode:2002Sci...295.1868T. DOI:10.1126/science.1067589. PMID:11884748. ISSN 0036-8075. اطلع عليه بتاريخ 2007-05-13. {{استشهاد بدورية محكمة}}: الوسيط غير المعروف |coauthors= تم تجاهله يقترح استخدام |author= (مساعدة)
  • Kenneth Chang (15 مارس 2005). "Tiny Bubbles Implode With the Heat of a Star". New York Times.
  • John D. Wrbanek, et al.(2009): Investigating Sonoluminescence as a Means of Energy Harvesting. pages 605–637, in: Marc G. Millis, Eric W. Davis: Frontiers of Propulsion Science. American Inst. of Aeronautics & Astronautics, Reston, ISBN 1-56347-956-7, Abstract NASA Technical Reports Server
  • For a "How to" guide for student science projects see: Robert Hiller and Bradley Barber (1995). "Producing Light from a Bubble of Air". Scientific American. ج. 272 ع. 2: 96–98. DOI:10.1038/scientificamerican0295-96.
  • Tatrocki، Paweł (2006). "Difficulties in Sonoluminescence Theory Based on Quantum Phenomenon of Vacuum Radiation". PHILICA.com. Article number 19. This article was created in 1996 together with the alternative theory; both were seen by Ms Eberlein. It contains many references to the crucial experimental results in this field.