دالتا الجزء الصحيح والمتمم الصحيح الأعلى

من ويكيبيديا، الموسوعة الحرة
اذهب إلى التنقل اذهب إلى البحث
دالة الجزء الصحيح
دالة السقف

في الرياضيات وفي علم الحاسوب، دالتا الجزء الصحيح والمتمم الصحيح الأعلى، (بالإنجليزية: Floor and ceiling functions)‏ تربطا عددا حقيقيا ما بأكبر عدد صحيح سابق أو أصغر عدد صحيح تابع على التوالي، حيث:

  • الجزء الصحيح أو المتمم الصحيح الأسفل لعدد حقيقي ما x هو أكبر عدد صحيح ليس أكبر من x. فصحيح العدد 2.6 هو 2 ، أى أكبر عدد صحيح ليس أكبر من 2.6 .
  • بينما السقف أو المتمم الصحيح الأعلى لعدد حقيقي x فهو أصغر عدد صحيح ولكن ليس أصغر من x. فسقف العدد 2.15 هو 3 ، أي أصغر عدد صحيح ليس أصغر من 2.15.

الرموز المستعملة[عدل]

استعمل كارل فريدريش غاوس في عام 1808 رمز المعقوفتين [x] للدلالة على الجزء الصحيح في برهانه الثالث لمبرهنة التربيعية التبادلية. بقي هذا الرمز هو المرجع حتى أدخل كينيث ايفرسون في عام 1962 الكلمتين الإنجليزيتين Floor و Ceiling مع الرمزين الدالين عليهما x و x في كتاب له تحت عنوان لغة البرمجة (A Programming Language).[1]

أمثلة[عدل]

قيمة ما ل x الجزء الصحيح السقف الجزء الكسري
12/5 = 2.4 2 3 2/5 = 0.4
2.7 2 3 0.7
0.3
0

التعريف والخصائص[عدل]

تطبيقات[عدل]

ثابتة أويلر[عدل]

هناك صيغ رياضياتية تتعلق بثابتة أويلر-ماسكيروني γ = 0.57721 56649 ... تحتوي على دالتي الجزء الصحيح والسقف. على سبيل المثال[2]

و

دالة زيتا لريمان (ζ)[عدل]

معضلات حلت[عدل]

طرح رامانجن المعضلة التالية لجريدة للجمعية الرياضياتية الهندية.[3]

إذا كان n عددا صحيحا موجبا، أثبت أن:

(i)    

(ii)    

(iii)    

معضلات لم تحل بعد[عدل]

انظر إلى معضلة ويرينغ.

مراجع[عدل]

  1. ^ Iverson, Kenneth E (1962). A Programming Language. صفحة 12. الوسيط |CitationClass= تم تجاهله (مساعدة)
  2. ^ These formulas are from the Wikipedia article Euler's constant, which has many more.
  3. ^ Ramanujan, Question 723, Papers p. 332

وصلات خارجية[عدل]


Nuvola apps edu mathematics-ar.svg
هذه بذرة مقالة عن الرياضيات او موضوع متعلق بها بحاجة للتوسيع. شارك في تحريرها.