دالتا الجزء الصحيح والمتمم الصحيح الأعلى

من ويكيبيديا، الموسوعة الحرة
دالة الجزء الصحيح
دالة السقف

في الرياضيات وفي علم الحاسوب، دالتا الجزء الصحيح والمتمم الصحيح الأعلى، (بالإنجليزية: Floor and ceiling functions)‏ تربطا عددا حقيقيا ما بأكبر عدد صحيح سابق أو أصغر عدد صحيح تابع على التوالي، حيث:

  • الجزء الصحيح أو المتمم الصحيح الأسفل لعدد حقيقي ما x هو أكبر عدد صحيح ليس أكبر من x. فصحيح العدد 2.6 هو 2، أي أكبر عدد صحيح ليس أكبر من 2.6 .
  • بينما السقف أو المتمم الصحيح الأعلى لعدد حقيقي x فهو أصغر عدد صحيح ولكن ليس أصغر من x. فسقف العدد 2.15 هو 3، أي أصغر عدد صحيح ليس أصغر من 2.15.

الرموز المستعملة[عدل]

استعمل كارل فريدريش غاوس في عام 1808 رمز المعقوفتين [x] للدلالة على الجزء الصحيح في برهانه الثالث لمبرهنة التربيعية التبادلية. بقي هذا الرمز هو المرجع حتى أدخل كينيث ايفرسون في عام 1962 الكلمتين الإنجليزيتين Floor و Ceiling مع الرمزين الدالين عليهما x و x في كتاب له تحت عنوان لغة البرمجة (A Programming Language).[1]

أمثلة[عدل]

قيمة ما ل x الجزء الصحيح السقف الجزء الكسري
12/5 = 2.4 2 3 2/5 = 0.4
2.7 2 3 0.7
0.3
0

تطبيقات[عدل]

ثابتة أويلر[عدل]

هناك صيغ رياضياتية تتعلق بثابتة أويلر-ماسكيروني γ = 0.57721 56649 ... تحتوي على دالتي الجزء الصحيح والسقف. على سبيل المثال[2]

و

معضلات حلت[عدل]

طرح رامانجن المعضلة التالية لجريدة للجمعية الرياضياتية الهندية.[3]

إذا كان n عددا صحيحا موجبا، أثبت أن:

(i)    

(ii)    

(iii)    

معضلات لم تحل بعد[عدل]

انظر إلى معضلة ويرينغ.

مراجع[عدل]

  1. ^ Iverson, Kenneth E (1962). A Programming Language. ص. 12. {{استشهاد بكتاب}}: يحتوي الاستشهاد على وسيط غير معروف وفارغ: |بواسطة= (مساعدة)
  2. ^ These formulas are from the Wikipedia article Euler's constant, which has many more.
  3. ^ Ramanujan, Question 723, Papers p. 332

وصلات خارجية[عدل]