هذه المقالة يتيمة. ساعد بإضافة وصلة إليها في مقالة متعلقة بها

رتبة (جبر خطي)

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث

رتبة المصفوفة (بالإنجليزية: Rank (linear algebra)) في الجبر الخطي، رتبة المصفوفة A هو حجم أكبر مجموعة من الأعمدة المستقلة خطياً من المنقولة المصفوفة A أو هي تنظيم مستطيل الشكل لمجموعة من الأعداد (تسمى المدخلات والواحدة منها مدخلة) على هيئة صفوف وأعمدة محصورة بين قوسين.

أعمدة مصفوفة لها الرتبة 4 (rank = 4) لعدم ارتباط العناصر في كل من الأعمدة خطياً

رتبة المصفوفة: إذا تكونت المصفوفة من (م) من الصفوف و(ن) من الأعمدة فإننا نعبر عن رتبتها بالرمز م× ن ( إشارة × مجرد رمز وليس لإجراء عملية الضرب ) ففي مثالنا السابق عن الكليات رتبة المصفوفة هي 3×4، حيث (3) هو عدد صفوفها و(4) هو عدد أعمدتها.

التعاريف الرئيسية[عدل]

رتبة المصفوفة أ تساوي رتبة منقولة المصفوفة أ التي بدورها تساوي بعد الفضاء العامودي لمنقولة المصفوفةوهذا هو ما يعرف بالرنبة. رتبة منقولة المصفوفة يساوي بعد الفضاء العامودي لرتبة المنقولة أروهو عدد متجهات القاعدة لفضاء العامود لمنقولة المصفوفة أ. ويتم تحديد متجهات القاعدة التي تحتاجها في الفضاء الجزئي ليساوي البعد المطلوب , اذاً رتبة منقولة المصفوفة أ تساوي عدد متجهات القاعدة لفضاء العامود لمنقولة المصفوفة أ الذي يساوي فضاء الصف للمصفوفة أ وذلك لأن أعمدة منقولة المصفوفة أ تساوي صفزف المصفوفة أ ولإيجاد المنقولة يتم تبديل الصفوف والأعمدة.

التسمية[عدل]

تسمية المصفوفة: يمكن أن نرمز للمصفوفة بأي حرف أبجدي أ أو ب أو ج ..... إلخ أو نسميها بأي اسم فمصفوفة مثالنا السابق يمكن أن نطلق عليها اسم مصفوفة الكليات.

أمثلة[عدل]

المصفوفة:

يوجد هنا رتبةعدد 2: أول صفين مستقلين عامودياً، وبالتالي فإن رتبهما هي 2 على الأقل، وذلك لأن كل الصفوف الثلاثة تعتمد اتجاه عامودي (الأول هو مساوي لمجموع الثانية والثالثة) لذلك يجب أن تكون مرتبة أقل من رتبة 3. المصفوفة

رتبة أ = عدد الصفوف × عدد الأعمدة = 2×3 .

أ 31 هي مدخلة الصف الأول والعمود الثالث = 1 .

أ 22 هي مدخلة الصف الثاني والعمود الثاني = 4 .

لدينا رتبة 1: هناك أعمدة غير صفرية، وبالتالي فإن رتبة إيجابية، ولكن أي زوج من الأعمدة يعتمد خطيا. وبالمثل، فإن تبديل أعمدة منقولة المصفوفة أ هو لإيجاد المقولة.

, i.e., rk(A) = rk(AT).

المصادر[عدل]

  • Roger A. Horn and Charles R. Johnson (1985). Matrix Analysis. ISBN 978-0-521-38632-6. 
  • Kaw, Autar K. Two Chapters from the book Introduction to Matrix Algebra: 1. Vectors [1] and System of Equations [2]
  • Mike Brookes: Matrix Reference Manual. [3]

انظر أيضاً[عدل]