شريط موبيوس

من ويكيبيديا، الموسوعة الحرة
اذهب إلى التنقل اذهب إلى البحث
شريط موبيوس مصنوع من قطعة من الورق وشريط لاصق. إذا قامت نملة بالزحف على طول هذا الشريط، فإنها ستمر على كلى الوجهين وستعود إلى النقطة التي بدأت منها وذلك بدون أن تقطع أي حواف، مع كونها اجتازت كل سطح في الشريط.

شريط موبيوس هو سطح بجانب واحد وبعنصر حدودي واحد، وله خاصية الـ (non-orientable) الرياضية (بمعنى أنه إذا مُرر سطح ثنائي الأبعاد (على سبيل المثال، Small pie.svg) على شريط موبيوس ثم أعيد إلى مكانه فإنه يرجع وكأنه صورة مرآة للشكل الأصلي (Pie 2.svg)). كما يعتبر شريط موبيوس أيضًا سطحًا مسطرًا. اكتشف شريط موبيوس بشكل مستقل بواسطة الرياضيان الألمانيان أوغست فيرديناند موبيوس، وجون بينديكت ليستينج عام 1858.[1][2][3]

يمكن صناعة نموذج لشريط موبيوس ببساطة عن طريق قص ورقة على هيئة شريط ثم نعقفه نصف عقفة (180 0)، ثم نربط نهايتي الشريط معًا ليصبح لدينا شريط واحد. وفي الحقيقة فإنه في الفضاء الإقليدي يكون لدينا نوعان من شريط موبيوس اعتمادًا على اتجاه النصف عقفة: إما في اتجاه حركة عقارب الساعة، أو عكس اتجاه حركة عقارب الساعة. ولهذا فإن شريط موبيوس يعتبر متماثلاً، بمعنى أن له "يدوية" (كما هو الحال اليد اليمنى واليد اليسرى).

بذلت محاولات لإيجاد حلول لمعادلات جبرية لها طوبولوجية شريط موبيوس، لكن بشكل عام هذه المعادلات لا تصف نفس الشكل الهندسي الذي نحصل عليه من عقف الورقة كما فُصل فيما سبق. وبشكل جزئي فإن النموذج الورقي المعقوف هو "سطح مطور" (السطح المطور هو سطح منحنى الجاوس له مساو للصفر). وفي 2007 تم نشر منظومة من معادلات جبرية تفاضلية (differential-algebraic equations) تصف نماذج من هذا النوع مع حلولها العددية.[4]

مميزة أويلر (وهو عدد يصف جانبًا واحدًا من الفضاء الطبوغرافي للشكل أو للهيكل) لشريط موبيوس تساوي صفر.

انظر أيضًا[عدل]

مراجع[عدل]

  1. ^ Clifford A. Pickover (2006). The Möbius Strip : Dr. August Möbius's Marvelous Band in Mathematics, Games, Literature, Art, Technology, and Cosmology. Thunder's Mouth Press. ISBN 1560258268. الوسيط |CitationClass= تم تجاهله (مساعدة)
  2. ^ Rainer Herges (2005). Möbius, Escher, Bach – Das unendliche Band in Kunst und Wissenschaft . In: Naturwissenschaftliche Rundschau 6/58/2005. صفحات 301–310. ISSN 0028-1050. الوسيط |CitationClass= تم تجاهله (مساعدة)
  3. ^ Chris Rodley (ed.) (1997). Lynch on Lynch. London, Boston. صفحة 231. الوسيط |CitationClass= تم تجاهله (مساعدة)صيانة CS1: نص إضافي: قائمة المؤلفون (link)
  4. ^ Starostin E.L., van der Heijden G.H.M. (2007). "The shape of a Möbius strip". Nature Materials]. 6: 563. doi:10.1038/nmat1929. مؤرشف من الأصل في 12 يوليو 2017. الوسيط |CitationClass= تم تجاهله (مساعدة)
Nuvola apps edu mathematics-ar.svg
هذه بذرة مقالة عن الرياضيات او موضوع متعلق بها بحاجة للتوسيع. شارك في تحريرها.