المحتوى هنا ينقصه الاستشهاد بمصادر، أي معلومات غير موثقة يمكن التشكيك بها وإزالتها.

صيغة دي موافر

من ويكيبيديا، الموسوعة الحرة
اذهب إلى التنقل اذهب إلى البحث
Question book-new.svg
المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018)
صيغة دي موافر
النوع مبرهنة  تعديل قيمة خاصية حالة من (P31) في ويكي بيانات
الصيغة   تعديل قيمة خاصية تعريف الصيغة (P2534) في ويكي بيانات
سميت بأسم أبراهام دي موافر  تعديل قيمة خاصية سمي باسم (P138) في ويكي بيانات
أعطى أبراهام دي موافر اسمه للصيغة.

في الرياضيات، صيغة دي موافر (بالإنجليزية: De Moivre's formula)، والمسماة هكذا نسبة إلى عالم الرياضيات أبراهام دي موافر هي المتطابقة التالية:

الصالحة من أجل كل القيم الحقيقية لx و n عدد صحيح؛ و هي نتيجة مباشرة لصيغة أويلر

البرهان باستخدام الاستقراء الرياضي[عدل]

يمكن دراسة ثلاث حالات للصيغة بحيث تحقق الحل.

من أجل n > 0, يمكن الاستعانة بالاستنتاج الاستقرائي. عند n = 1, تتحقق صحة الحل بشكل بديهي من صيغة أويلر. يفترض أن يظل الحل صحيحا لأي عدد طبيعي، k. أي

وبدراسة الحالة n = k + 1:

العلاقة (1) تم استنباطها من فرضية الاستقراء بينما العلاقة (2) من المتطابقات المثلثية. وبالتالي فإن الصيغة صحيحة عند n = k + 1 إذا كانت n = k صحيحة. ويمكن تعميم الصيغة لكل عدد صحيح موجب، n≥1.

اذا كانت n = 0 تظل الصيغة صحيحة، ومن المعروف أن .

إذا كانت n < 0, يمكن تعديل الاختيار على m بحيث يصبح n = −m. وبالتالي

أي أن العلاقة صحيحة في جميع الأحوال لكل قيم n الصحيحة.

استخدامات صيغة دي موافر[عدل]

تستخدم هذه الصيغة للبحث عن القوى النونية للأعداد العقدية في الشكل المثلثي:

و كذلك للحصول على أشكال (cos(nx و (sin(nx بدلالة (sin(x و (cos(x.

على سبيل المثال، للحصول على (cos(2x و (sin(2x، نُساوي:

.

لدينا:

.

نُساوي الأجزاء الحقيقية والتخيلية للحصول على المعادلتين التاليتين:

.

حدوديات تشيبيشيف[عدل]

صيغة موافر تعطي:

.


.

مراجع[عدل]

قاموس رياضيات عربى -انجليزى-فرنسى-الجزء الثانى- اهداء الاستاذ إبراهيم الاحمدى (بتصرف)

وصلات خارجية[عدل]