انتقل إلى المحتوى

طرق حساب الجذر التربيعي

من ويكيبيديا، الموسوعة الحرة

في التحليل العددي، هناك عدة طرق لحساب الجذر التربيعي الرئيسي (أي الموجب) لعدد حقيقي موجب.[1] عادة ما تعطي هذه الطرق قيمة مقربة للجذر التربيعي المراد حسابه.

تقريب عام

[عدل]

انظر إلى متوسط هندسي.

التقريب بالكسور المتتابعة

[عدل]

العدد يكتب على الشكل

[عدل]

إذا وجد عددان بحيث

الطريقة البابلية

[عدل]
Graph charting the use of the Babylonian method for approximating the square root of 100 (10) using starting values x0 = 50, x0 = 1, and x0 = −5. Note that using a negative starting value yields the negative root.

انظر إلى هيرو السكندري وإلى طريقة نيوتن.

أولا : نختار قيمة للعدد (من الأحسن إختاره حيث بالقريب إلى الوحدة حيث S هو العدد الذي نريد حساب جذره التربيعي)

ثانيا : نحسب الأعداد الحدود المتتالية للمتتالية و نتوقف عند العدد حيث

أمثلة

[عدل]

لحساب , حيث S = 125348,

هكذا,

لحساب , حيث S = 27,

هكذا,

طريقة القيمتين الدنيا والقصوى

[عدل]

انظر إلى طريقة التنصيف.

التمثيل العشري

[عدل]

تمكن من حساب قيمة تقريبية لجذر مربع عدد ما.

  1. يقسم العدد من اليمين إلى اليسار، إلى زمر من رقمين:مثلا 11878 يصبح 78 18 1.
  2. نبحث عن الجذر القريب للزمرة الأولى أقصى اليسار:هنا 1 والجذر هو 1.
  3. نحسب الباقي الزمرة ناقص مربع العدد:هنا نجد 0.
  4. ننزل الزمرة الموالية إلى جانب الباقي:هنا نحصل على 18 أي 018
  5. نضاعف الجذر الجزئي المحصل عليه حاليا:هنا 2.
  6. نحدف رقم الوحدات للعدد المحصل عليه في 4:نحصل على 1.
  7. نقسم العدد المحصل عليه في 6، على العدد المحصل عليه في 5، والعدد المحصل عليه سيكون هو الرقم الموالي للجذر:هنا 1 على 2 تساوي 0.
  8. نضع الرقم المحصل عليه في 7 على يمين العدد المحصل عليه في 5:هنا نجد 20
  9. نضرب العدد المحصل عليه في 8، في العدد المحصل عليه في 7:هنا نجد 20 في 0 يساوي 0.
  10. نطرح من العدد المحصل عليه في 4، العدد المحصل عليه في 9:هنا نجد 18 وفي حالة الحصول على عدد سالب نطرح واحد من العدد المحصل عليه في 7 ونستأنف العملية.
  11. ننزل الزمرة الموالية إلى جانب الباقي المحصل عليه في 10:هنا نجد 1878
  12. نعيد العمليات انطلاقا من المرحلة 5.

انظر أيضًا

[عدل]

مراجع

[عدل]
  1. ^ "معلومات عن طرق حساب الجذر التربيعي على موقع mathworld.wolfram.com". mathworld.wolfram.com. مؤرشف من الأصل في 2021-04-12.