قائمة الرموز المنطقية

من ويكيبيديا، الموسوعة الحرة
اذهب إلى التنقل اذهب إلى البحث


في المنطق، تُستخدم مجموعة من الرموز للتعبير عن مفاهيمَ منطقيةٍ. القائمة الآتية تُلخّص أبرز الترميزات مع تسميتها واستعمالها في لغة HTML.[1]

الرمز الاسم وصف مثال قيمة اليونيكود

(في نظام العد الست عشري)

قيمة HTML

(في نظام العد العشري)

اسم ترميز HTML ترميز اللاتخ

LaTeX

القراءة
التصنيف


قضية شرطية is true if and only if can be true and can be false but not vice versa.
may mean the same as (the symbol may also indicate the domain and codomain of a function; see table of mathematical symbols).
may mean the same as (the symbol may also mean superset).
العبارة صحيحة. لكن العبارة خاطئة؛ لأنَّ ممكن أن تكون -2. U+21D2
U+2192
U+2283
⇒
→
⊃
⇒
→
⊃
\Rightarrow

\to or \rightarrow\supset

\implies

يقتضي؛ إذا ... فإنَّ
حساب القضايا، الجبر


قضية تكافؤية is true only if both and are false, or both and are true. U+21D4
U+2261
U+2194
⇔
≡
↔
⇔
≡
↔
\Leftrightarrow

\equiv\leftrightarrow

\iff

إذا وفقط إذا
حساب القضايا
¬
˜
!
نفي The statement is true if and only if is false.
A slash placed through another operator is the same as placed in front.
U+00AC
U+02DC
U+0021
¬
˜
!
¬
˜
!
\lnot or \neg

\sim

ليس
حساب القضايا

·
&
logical conjunction The statement AB is true if A and B are both true; otherwise, it is false. n < 4  ∧  n >2  ⇔  n = 3 when n is a natural number. U+2227
U+00B7
U+0026
&#8743;
&#183;
&#38;
&and;
&middot;
&amp;
\wedge or \land

\&[2]

و
حساب القضايا، جبر بول

+
logical (inclusive) disjunction The statement AB is true if A or B (or both) are true; if both are false, the statement is false. n ≥ 4  ∨  n ≤ 2  ⇔ n ≠ 3 when n is a natural number. U+2228
U+002B
U+2225
&#8744;
&#43;
&#8741;
&or;
\lor or \vee

\parallel

or
حساب القضايا، جبر بول

exclusive disjunction The statement AB is true when either A or B, but not both, are true. AB means the same. A) ⊕ A is always true, and AA always false, if vacuous truth is excluded. U+2295
U+22BB
&#8853;
&#8891;
&oplus;
\oplus

\veebar

xor
حساب القضايا، جبر بول

T
1
Tautology The statement is unconditionally true. A ⇒ ⊤ is always true. U+22A4
&#8868;
\top
top, verum
حساب القضايا، جبر بول

F
0
Contradiction The statement ⊥ is unconditionally false. (The symbol ⊥ may also refer to perpendicular lines.) ⊥ ⇒ A is always true. U+22A5
&#8869;
&perp;
\bot
bottom, falsum, falsity
حساب القضايا، جبر بول

()
universal quantification ∀ xP(x) or (xP(x) means P(x) is true for all x. ∀ n ∈ ℕ: n2 ≥ n. U+2200
&#8704;
&forall;
\forall
for all; for any; for each
منطق الرتبة الأولى
existential quantification ∃ x: P(x) means there is at least one x such that P(x) is true. ∃ n ∈ ℕ: n is even. U+2203 &#8707; &exist; \exists
there exists
first-order logic
∃!
uniqueness quantification ∃! x: P(x) means there is exactly one x such that P(x) is true. ∃! n ∈ ℕ: n + 5 = 2n. U+2203 U+0021 &#8707; &#33; \exists !
there exists exactly one
منطق الرتبة الأولى


:⇔
definition x ≔ y or x ≡ y means x is defined to be another name for y (but note that ≡ can also mean other things, such as congruence).
P :⇔ Q means P is defined to be logically equivalent to Q.
cosh x ≔ (1/2)(exp x + exp (−x))
A XOR B :⇔ (A ∨ B) ∧ ¬(A ∧ B)
U+2254 (U+003A U+003D)
U+2261
U+003A U+229C
&#8788; (&#58; &#61;)
&#8801;
&#8860;
&equiv;
&hArr;
:= \equiv:\Leftrightarrow
is defined as
كل مكان
( )
precedence grouping Perform the operations inside the parentheses first. (8 ÷ 4) ÷ 2 = 2 ÷ 2 = 1, but 8 ÷ (4 ÷ 2) = 8 ÷ 2 = 4. U+0028 U+0029 &#40; &#41; ( )
parentheses, brackets
كل مكان
Turnstile xy means y is provable from x (in some specified formal system). AB ⊢ ¬B → ¬A U+22A2 &#8866; \vdash
provable
حساب القضايا، منطق الرتبة الأولى
double turnstile xy means x semantically entails y AB ⊨ ¬B → ¬A U+22A8 &#8872; \vDash, \models
entails
حساب القضايا، منطق الرتبة الأولى

انظر أيضا[عدل]

مراجع[عدل]

  1. ^ "Named character references"، HTML 5.1 Nightly، W3C، مؤرشف من الأصل في 28 يناير 2016، اطلع عليه بتاريخ 09 سبتمبر 2015.
  2. ^ Although this character is available in LaTeX, the ميدياويكي TeX system does not support it.