كوبالتوسين

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
كوبالتوسين
كوبالتوسين
كوبالتوسين

يجب تغيير حجم الصورة، لا يجب أن يتجاوز 130 بك.

الاسم النظامي (IUPAC)

مضاعف حلقي بنتادينيل الكوبالت

أسماء أخرى

كوبالتوسين

المعرفات
الاختصارات Cp2Co
رقم CAS 1277-43-6
بوبكيم (PubChem) 92884
رقم المفوضية الأوروبية 215-061-0   تعديل قيمة خاصية EINECS number (P232) في ويكي بيانات
الكيانات الكيميائية للأهمية البيولوجية 30678   تعديل قيمة خاصية معرف ChEBI (P683) في ويكي بيانات
رقم RTECS GG0350000   تعديل قيمة خاصية رقم RTECS (P657) في ويكي بيانات

الخواص
صيغة جزيئية C₁₀H₁₀Co[1]   تعديل قيمة خاصية صيغة كيميائية (P274) في ويكي بيانات
الكتلة المولية 189.12 غ/مول
المظهر بلورات سوداء
نقطة الانصهار 176-180 °س يتفكك
الذوبانية في الماء غير منحل بالماء
الذوبانية ينحل في المحلات غير القطبية
المخاطر
ترميز المخاطر
قابل للاشتعال F
توصيف المخاطر
تحذيرات وقائية
في حال عدم ورود غير ذلك فإن البيانات الواردة أعلاه معطاة بالحالة القياسية (عند 25 °س و 100 كيلوباسكال)

الكوبالتوسين مركب عضوي فلزي له الصيغة C10H10Co والتي يمكن أن تكتب Co(η5C5H5)2، وهو من المعقدات التساندية وينتمي إلى الميتالوسينات، التي تعد صنفاً من المركبات الشطيرية، ويكون على شكل بلورات سوداء.

الخواص[عدل]

  • مركب الكوبالتوسين حساس تجاه الهواء فهو يتأكسد بسهولة بأكسجين الهواء إلى الكاتيون + Cp2Co ذي اللون الأصفر، لذا يجب حفظه تحت جو من غاز خامل.
  • لا ينحل الكوبالتوسن في الماء، لكنه ينحل جيداً في المحلات غير القطبية مثل الهكسان أو التولوين.
  • يتفاعل الكوبالتوسين مع غاز أحادي أكسيد الكربون مشكلاً Co(C5H5)(CO)2، وهو عبارة عن سائل قابل للتقطير، ولديه ثباتية تجاه الهواء.

البنية[عدل]

يكون للكوبالتوسين البنية النمطية لمركبات الميتالوسين الشطيرية، حيث تتوسط ذرة فلز مركزية الفراغ بين حلقتي بنتادينيل متوازيتين.[3] وفي حالة الكوبالتوسين تكون الذرة المركزية عبارة عن ذرة كوبالت، حالة أكسدتها +2. يمتلك الكوبالتوسين في بنيته 19 إلكترونا تكافؤياً، 7 من ذرة الكوبالت، و6 من كل حلقة بنتادينيل، فيكون المجموع 7 + 12 = 19، وهو بذلك لديه إلكتروناً واحداً زيادة عن قاعدة 18-إلكترون، والتي تنطبق عادة على أغلب معقدات الفلزات الانتقالية العضوية. يشغل الإلكترون الفائض مداراً ذرياً غير رابط وذلك بالنسبة للرابطة Co-C، بالتالي تكون الروابط بين الكوبالت وذرات الكربون أطول قليلاً من تلك التي بين الحديد والكربون في الفيروسين الذي يحقق قاعدة 18 إلكترون، بحيث أن المسافة بين حلقتي البنتادينيل Cp-Cp تكون 340 بيكومتر في الكوبالتوسين، مقابل 332 بيكومتر في الفيروسين.

إن العديد من التفاعلات الكيميائية للكوبالتوسين تتأثر بوجود هذا الإلكترون الفائض، بحيث أن المعقد يميل إلى منح هذا الإلكترون مشكلاً كاتيون الكوبالتوسينيوم.

2Co(C5H5)2 + I2 2[Co(C5H5)2]+ + 2I
19e
   
18e
 

تفاعلات أكسدة-اختزال[عدل]

يعد الكوبالتوسين من العوامل المختزلة التي تقوم على تبادل إلكترون واحد. تكون القدرة الاختزالية للكوبالتوسين أقل من تلك التي لمركب عشاري ميثيل الكوبالتوسين، Co(C5Me5)2، الذي يتخلى عن الإلكترون الفائض بصورة أسهل، نتيجة الكثافة الإلكترونية العالية التي تقدمها مجموعات الميثيل. يمتاز الكوبالتوسين ومشتقه الميثيلي بأنهما من الأمثلة النادرة للعوامل المختزلة التي تنحل في المحلات غير القطبية. تحوي القائمة أدناه كمونات الاختزال لهذه المركبات مع استخدام زوج فيروسين-فيروسينيوم كمعيار:

Fe(C5H5)2+/Fe(C5H5)2: 0 V
Fe(C5Me5)2+/Fe(C5Me5)2: -0.59 V
Co(C5H5)2+/Co(C5H5)2: -1.33 V
Co(C5Me5)2+/Co(C5Me5)2: -1.94 V

التحضير[عدل]

يحضر الكوبالتوسين من تفاعل حلقي بنتادينيد الصوديوم NaC5H5 مع كلوريد الكوبالت الثنائي اللامائي أو مع سداسي أمين كلوريد الكوبالت الثنائي في وسط من رباعي هيدرو الفوران THF، حيث يتشكل ملح كلوريد الصوديوم كناتج ثانوي، ويفصل الكوبالتوسين بالتسامي تحت الفراغ.[4]

CoCl2 + 2NaCp → CoCp2 + 2NaCl
Co(NH3)Cl2 + 2NaCp → CoCp2 + 2NaCl + 6NH3

الاستخدامات[عدل]

يستخدم الكوبالتوسين بشكل شائع في المختبرات كعامل اختزال يقوم على أساس تبادل إلكترون واحد.[5] يمتاز الزوج الناتج عن تفاعلات الأكسدة-اختزال بثباتيته، لذلك يستخدم أحيانا كمعيار داخلي في الفولتية الدورية Cyclic voltammetry.

المراجع[عدل]

  1. ^ أ ب مذكور في : بوب كيممعرف بوب كيم: 92884 — تاريخ الاطلاع: 20 سبتمبر 2016 — رخصة: محتوى حر
  2. ^ Bis(cyclopentadienyl)cobalt(II) | Sigma-Aldrich
  3. ^ C. Elschenbroich, A. Salzer ”Organometallics : A Concise Introduction” (2nd Ed) (1992) from Wiley-VCH: Weinheim. ISBN 3-527-28165-7
  4. ^ King, R. B. “Organometallic Syntheses” Volume 1: Academic Press: New York, 1965.
  5. ^ N. G. Connelly, W. E. Geiger (1996). "Chemical Redox Agents for Organometallic Chemistry". Chem. Rev. 96: 877–910. doi:10.1021/cr940053x.