لوغاريتم طبيعي

من ويكيبيديا، الموسوعة الحرة

هذه نسخة قديمة من هذه الصفحة، وقام بتعديلها Abdeldjalil09 (نقاش | مساهمات) في 19:18، 15 ديسمبر 2019. العنوان الحالي (URL) هو وصلة دائمة لهذه النسخة، وقد تختلف اختلافًا كبيرًا عن النسخة الحالية.

اذهب إلى التنقل اذهب إلى البحث
لوغاريتم طبيعي
منحنى دالة اللوغاريتم الطبيعي. تصعد الدالة بشكل بطيء إلى زائد ما لا نهاية له عندما يصير x كبيرا، بينما تذهب إلى ناقص ما لا نهاية له بسرعة كبيرة عندما يقترب x من الصفر. محور الأراتيب هو خط مقارب للدالة.
منحنى دالة اللوغاريتم الطبيعي. تصعد الدالة بشكل بطيء إلى زائد ما لا نهاية له عندما يصير x كبيرا، بينما تذهب إلى ناقص ما لا نهاية له بسرعة كبيرة عندما يقترب x من الصفر. محور الأراتيب هو خط مقارب للدالة.
ترميز
دالة عكسية
مشتق الدالة على المجال
مشتق عكسي
(تكامل)
الميزات الأساسية
مجال الدالة
المجال المقابل
قيم محددة
القيمة/النهاية عند الصفر على اليمين:
نهاية الدالة عند +∞
القيمة/النهاية عند 1 0
القيمة/النهاية عند e 1
خطوط مقاربة
جذور الدالة 1


Logarithme népérien.png

اللوغاريتم الطبيعي (بالإنجليزية: Natural logarithm)‏ أو اللوغاريتم النبيري هي دالة لوغاريتمية للأساس e. وهي الدالة الاصلية للدالة على وتنعدم في 1. يُرمز لهذه الدالة ب Log (عدم الخلط مع log والتي ترمز لدالة اللوغاريتم العشري) أو ln بصفة عامة.

التاريخ

ويسمى هذا اللوغاريتم أيضا باللوغاريتم النيبيري تكريماً لعالم الرياضيات الاسكتلندي جون نابير الذي أنشأ أول الجداول اللوغاريتمية (والتي ليست في الواقع جداول لوغاريتمات طبيعية).

تم وضع مفهوم اللوغاريتم الطبيعي بواسطة غريغوار دو سان فنسان [الإنجليزية] و ألفونس أنطونيو دي ساراسا [الإنجليزية] قبل عام 1649. تضمن عملهم تربيع [الإنجليزية] للقطع الزائد مع المعادلة xy = 1 من خلال تحديد مساحة القطاعات الزائدية. تولد حلولهم وظيفة "اللوغاريتم الزائدي" المطلوبة التي لها خصائص مرتبطة الآن باللوغاريتم الطبيعي.

كان هناك ذكر مبكر للوغاريتم الطبيعي من قبل نيكولاس مركاتور في عمله Logarithmotechnia المنشور في 1668 ، [1] على الرغم من أن مدرس الرياضيات جون سبيديل [الإنجليزية] قام بالفعل في عام 1619 بتجميع جدول لما كان في الواقع لوغاريتمات طبيعية. لقد قيل إن لوغاريتمات سبيديل كانت ذات الأساس e ، لكن هذا ليس صحيحًا تمامًا بسبب التعقيدات التي يتم التعبير عنها بالقيم كأعداد صحيحة.

اتفاق حول الرموز

يشير الرمزان "ln x" و "loge x" بشكل لا لبس فيه إلى اللوغاريتم الطبيعيّ لِـx. و قد يُفهم من الرمز "log x" دون أي ذكر صريح لأي أساس أنه لوغاريتم طبيعيّ لِـx. يشيع هذا الفهم بين الأوساط العلميّة و في الرياضيات بالإضافة إلى بعض لغات البرمجة.(ملاحظة 1) يُمكن استخدم الرمز "log x" في بعض السياقات الأخرى للإشارة إلى اللوغاريتم ذو الأساس 10.

تاريخياً، أُدخلت الرموز "l." و "l" إلى الاستخدام منذ ثلاثينيات القرن الثامن عشر 1730s على الأقل،[2][3] و بقيت حتى أربعينيات القرن التاسع عشر 1840s على الأقل،[4] أما الرمز "log."[5] أو "log"،[6] فمنذ تسعينيات القرن الثامن عشر 1790s على الأقل. أخيراً، في القرن العشرين سُجِلَت الرموز "Log"[7] و "logh"[8].

أصل مصطلح اللوغاريتم الطبيعي

وحدة من منطقة تصف عدد يولر.

تنتج الدالة و ذلك من أجل n ∈ ℤ تسلسل ثنائي لانهائيّ من النقاط يُمثّل قطعاً زائداً. عندما تُوصَل نقطتان متجاورتان إلى النقطة (0,0) بواسطة أشعة القطع الزائد، حينها يتشكَّل قطاع من هذا القطع الزائد، يكون لهذا القطاع منطقة وحدة "unit area". و بالتالي فإن المنطقة الكليّة الموجودة داخل القطع الزائد و خطوط مُقارباته منطقةٌ لانهائيّة، بما يتفق مع تباعد المتسلسلة المتناسقة. يتفق قياس المنطقة مع قياس القوس في كلا الدائرة و القطع الزائد الأيمن: ففي دائرة نصف قطرها √2 يكون لقوس القطاع الدائريّ زاوية تساوي منطقة القطاع. و بالمثل، تُقاس زاوية القطع الزائد للقوس القطع الزائديّ بالمنطقة الموافقة من قطاع القطع الزائد ذو المعادلة xy = 1.
يعود الفضل إلى ليونارد يولر الذي عرَّف بأهمية عدد يولر e=2.71828... كأساس للدالة الأسيّة و اللوغاريتم الطبيعيّ. حيث أنه قدَّم لفكرة الدالة المتسامية لتصنيف الدوال المثلثيّة و الأسيّة في كتاب مقدمة في تحليل اللانهاية (1748). يتطلَّب تقدير مساحة القطع الزائد اللوغاريتم الطبيعيّ، لذا كان يحول نقص التعبير عن تربيع القطع الزائد دون حساب التكامل، حتى وصفه جريجوري دي سانت-فينست (1647) بميزة لوغاريتميّة: إن توافق تسلسل حسابيّ من المناطق مع التسلسل الهندسيّ للمُقاربات. قادت توضيحات نيكولاس مركاتور و كريستيان هوغنس إلى مقدمة يولر التي فصَّلت الدوال الدائريّة من حيث السلسلة اللانهائيّة.
إن صلة الوصل بين المنطقة و أقواس الدائرة و دوال القطع الزائد تُظهر "طبيعيّة" اللوغاريتم.[9]

التعريفات

يعرف (ln(a بالمساحة الملونة الموجودة تحت منحنى الدالة f(x) = 1/x ابتداء من 1 حتى a.

رسمياً، في حالة a يُمكن تعريف اللوغاريتم الطبيعيّ بأنه المنطقة تحت القطع الزائد 1/x. هذا هو التكامل

هذه الدالة لوغاريتم لأن توافق المبدأ الأساسيّ للوغاريتم:

يُمكن توضيح ذلك من خلال تقسيم التكامل الذي يُعرِّف ln(ab) إلى جزأين و من ثُمّ المكاملة بالتعويض x = ta في الجزء الثاني، وفق الآتي:

في المصطلحات الأوليّة، هذا مجرد تحجيم بواسطة 1/a في الاتجاه الأفقيّ و بواسطة a في الاتجاه العموديّ. لا تتغير المنطقة تحت هذا التحوّل، و لكن يتم إعادة تشكيل المنطقة بين a و ab. لأن الدالة a/(ax) تُساوي الدالة 1/x، تكون المنطقة الناتجة بالضبط ln(b).
يُعرَّف العدد e بأنه عدد حقيقيّ فريد a حيث ln(a) = 1.
بدلاً من ذلك، إذا عُرِّفت الدالة الأسيّة أولاً، قل باستخدام سلسلة لانهائيّة، قد يُعرَّف اللوغاريتم الطبيعيّ بالدالة العكسيّة مثلاً ln هي كالدالة الآتية exp(ln(x)) = x. و بما أن مجال الدالة الأسيّة متزايد بحدّة، فإن ذلك مُحدَّد بشكل جيّد لجميع قيم x الإيجابيّة.

خاصيات

اتصال ورتابة دالة اللوغاريتم الطبيعي

نستنتج مما سبق ان الدالة ln معرفة على وقابلة للاشتقاق على هذا المجال و:

و منه الدالة ln متصلة على و بما ان مشتقتها موجبة قطعا فانها تزايدية قطعا على

عمليات على دالة اللوغاريتم الطبيعي

لتكن f دالة معرفة ب حيث a و x عددان موجبان قطعا. مشتقة هي نفس مشتقة دالة اللوغاريتم الطبيعي اي ان :

و بما ان : f(1) =k فان : ln(a)=k اذن وبصفة عامة :

من هذه الخاصية نستنتج الخاصيات التالية :

  • *

الاشتقاق ومتسلسلات تايلور

دالة اللوغاريتم الطبيعي في التكامل

الكسور المستمرة

في حين لا توجد كسور مستمرة بسيطة مُتاحة، فإن العديد من الكسور المستمرة المُعمَّمة هي، بما في ذلك:

فهذه الكسور المستمرة، و بشكل محدد الأخير، هذه الكسور تتقارب للقيم القريبة من الواحد. على أي حال، يمكن حساب اللوغاريتمات الطبيعيّة لمعظم الأرقام الأكبر ببساطة عبر إضافة هذه الأرقام الأصغر بشكل متكرر، مع تقارب سريع مماثل. على سبيل المثال بما أن 2 = 1.253 × 1.024 يمكن حساب اللوغاريتم الطبيعيّ لِـ2 بالشكل الآتي:

علاوةً على ذلك، بما أن 10 = 1.2510 × 1.0243 فإن اللوغاريتم الطبيعيّ لِـ10 يمكن حسابه و بطريقة مُشابهة لما سبق، وفق الآتي:

اللوغاريتم العقدي

يعرف كالآتي:

انظر أيضا

هوامش

ملاحظة 1: تتضمن هذه اللغات سي، و سي ++ و ساس [الإنجليزية] و ماتلاب و ماثماتيكا و فورتران و بايزيك.

مراجع

  1. ^ O'Connor, J. J.; Robertson, E. F. (September 2001). "The number e". The MacTutor History of Mathematics archive. مؤرشف من الأصل في 14 أغسطس 2019. اطلع عليه بتاريخ 02 فبراير 2009. الوسيط |CitationClass= تم تجاهله (مساعدة)
  2. ^ Euler, Leonhard (1737). "Variae observationes circa series infinitas". Commentarii academiae scientiarum imperialis Petropolitanae (CASP) (نشر 1744). 9: 160–188. E72. الوسيط |CitationClass= تم تجاهله (مساعدة)
  3. ^ Euler, Leonhard (1925). Opera Omnia, Series Prima: Opera Mathematica. Quartum Decimum. Teubner. الوسيط |CitationClass= تم تجاهله (مساعدة)
  4. ^ Cauchy, Augustin. Exercices d'analyse et de physique mathématique. 3. صفحة 380. مؤرشف من الأصل في 5 سبتمبر 2015. اطلع عليه بتاريخ 31 أكتوبر 2015. الوسيط |CitationClass= تم تجاهله (مساعدة)
  5. ^ Legendre, Adrien-Marie (1798). Essai sur la théorie des nombres. VI. Paris, France: Duprat, libraire pour les mathématiques, quai des Augustins. الوسيط |CitationClass= تم تجاهله (مساعدة)
  6. ^ Landau, Edmund (1953) [1909]. Handbuch der Lehre von der Verteilung der Primzahlen (الطبعة 2). Berlin: Chelsea, New York. الوسيط |CitationClass= تم تجاهله (مساعدة)
  7. ^ Piskounov, Nikolaï (1972). Calcul différentiel et intégral (الطبعة 5). Moskow: Editions Mir. صفحة 91. مؤرشف من الأصل في 17 نوفمبر 2015. الوسيط |CitationClass= تم تجاهله (مساعدة)
  8. ^ Jolley, L. B. W. (1961). Summation of Series (PDF) (الطبعة 2 (revised)). New York, USA: Dover Publications, Inc. LCCN 61-65274. مؤرشف من الأصل (PDF) في 17 أبريل 2018. اطلع عليه بتاريخ 31 أكتوبر 2015. الوسيط |CitationClass= تم تجاهله (مساعدة)
  9. ^ Ballew, Pat. "Math Words, and Some Other Words, of Interest". مؤرشف من الأصل في 05 ديسمبر 2017. اطلع عليه بتاريخ 18 يناير 2018. الوسيط |CitationClass= تم تجاهله (مساعدة); تحقق من التاريخ في: |تاريخ أرشيف= (مساعدة)

وصلات خارجية