قانون جيب التمام

من ويكيبيديا، الموسوعة الحرة
(بالتحويل من مبرهنة الكاشي)
اذهب إلى التنقل اذهب إلى البحث
في المثلث ABC الزوايا α, β, γ هي المقابلة على الترتيب للأضلاع a, b, c.

قانون جيب التمام أو قانون التجيب أو مبرهنة الكاشي هي مبرهنة في هندسة المثلثات[ملاحظة 1] تربط ضلع أي مثلث بضلعيه الآخرين وجيب تمام الزاوية المحصورة بينهما. ينص قانون جيب التمام على أنه في أي مثلث أطوال أضلاعه a, b, c المقابلة للزوايا α, β, γ فإنَّ:[1]

.

قانون جيب التمام يُعمم نظرية فيثاغورس لأي مثلث بأي زوايا. بوضع نجد أنَّ ومنها نظرية فيثاغورس .

التسمية[عدل]

سُميت بهذا الاسم نسبة إلى العالم غياث الدين الكاشي.

التاريخ[عدل]

شكل. 2 - مثلث ABC مع ارتفاع BH

في كتاب العناصر لإقليدس، نجد مقاربة هندسية لتعميم مبرهنة فيثاغورس: نجد في الكتاب2 العبارتين 12 و13, حيث يتم التطرق لحالة مثلث عادي بزاوية منفرجة وفي مثلث عادي بزوايا حادة. لكن عدم وجود الدوال المثلثية (آنذاك) وكذلك الجبر أدى إلى استعمال المساحات.

فالعبارة 12 : في المثلث المنفرج الزاوية يكون مساحة المربع المنشأ على الضلع المقابل للزاوية المنفرجة مساوياً لمجموع مساحتي المربعين المنشأين على الضلعين الآخرين مضافاً إلى هذا المجموع ضعف مساحة المستطيل الذي بعداه طول أحد هذين الضلعين وطول مسقط الضلع الآخر عليه. وفي الشكل المقابل المثلث ABC مثلث منفرج الزاوية في C والقطعة المستقيمة CH هي مسقط الضلع BC على الضلع AC (انظر شكل2) وبالتالي وطبقاً للنظرية يكون

و كان يجب أنتظار العرب المسلمين لتظهر الدوال المثلثية لرؤية المبرهنة في تطورها: فالفلكي والرياضي البتاني عمم نتيجة إقليدس في الهندسة الفضائية والتي مكنت من القيام بحساب المسافات بين النجوم. وفي نفس الوقت تم إنشاء جداول للدوال المثلثية والتي أتاحت للعالم غياث الدين الكاشي صياغة المبرهنة في شكلها النهائي.

تطبيقات[عدل]

مبرهنة الكاشي في تعميم لمبرهنة فيتاغورس، عندما تكون الزاوية : قائمة، أو عندما يكون: ، المبرهنة تصبح:, و عكسيا.

شكل. 3 - تطبيق المبرهنة :الكاشي زاوية أو ضلع مجهول.

النظرية تستعمل في المثلثات(انظر شكل. 3)حل مثلث، أي تحديد:

  • الضلع الثالث لمثلث نعرف فيه زاوية والضلعين المكونين لها:
 ;
  • زوايا مثلث نعرف فيه الأضلاع:
.

البراهين[عدل]

بتقسيم المساحات[عدل]

من بين طرق البرهنة حساب المساحات، حيث يتم ملاحظة ما يلي:

  • , و هي مساحات لمربع أضلاعه على التوالي , و
  • وهو ل متوازي أضلاع من جهة و يكونان زاوية ، تغيير إشارة: تصبح الزاوية منفرجة تجعل دراسة الحالات ضرورية.
شكل. 4أ - البرهنة بالنسبة للزوايا الحادة : « طريقة التقسيم ».

الشكل 4أ (جانبه) يقسم سباعي بكيفيتين مختلفتين حيث تتم البرهنة في حالة زاوية حادة. يدخل هنا :

  • بالوردي، lالمساحات , في اليسار، والمساحات و في اليمين ;
  • بالأزرق، المثلث ABC، في اليمين كما في اليسار ;
  • بالرمادي، بعض المثلثات الإضافية، متطابقة مع المثلث ABC وبنفس العدد في التقسيمين.

تساوي المساحات في اليمين واليسار يعطي

.
شكل. 4ب - البرهنة بالنسبة للزوايا المنفرجة : « طريقة التقسيم ».

الشكل 4ب (جانبه) يقسم سداسي بكيفيتين مختلفتين بكيفية برهن في حالة زاوية منفرجة. الشكل يبين

  • بالوردي، المساحات , و في اليسار، والمساحات في اليمين ;
  • بالأزرق، مرتين المثلث ABC، في اليمين كما في اليسار.

تساوي المساحتين يمينا ويسارا يعطي

.

باستعمال نظرية فيتاغورس[عدل]

شكل. 5 - البرهنة باستعمال العلاقات المثلثية

الشكل 5 (جانبه) يبين طريقة البرهنة باستعمال مبرهنة فيتاغورس في مثلث قائم الزاوية ناتج عن طريق الارتفاع :

بنفس الطريقة نبرهن في حالة مثلث بزاوية منفرجة

انظر أيضاً[عدل]

ملاحظات[عدل]

  1. ^ هي أيضاً تعميم لمبرهنة فيثاغورس على أي زاوية من زوايا المثلث (ليست بالضرورة قائمة).

مراجع[عدل]

  1. ^ Java applet version by Prof. D E Joyce of Clark University. نسخة محفوظة 05 أغسطس 2017 على موقع واي باك مشين.