مبرهنة برون فروبانيوس

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث

مبرهنة برون وفروبانيوس مبرهنة تتعلق بنظرية المصفوفات (matrix) وهي من اكتشاف اوسكار برون وفرديناند جورج فروبانيوس وتقول المبرهنة ما يلي:

  • إذا كانت المصفوفة A موجبة أي كل عناصرها أكبر أو تساوي صفر وإذا كانت Aغير قابلة للاختزال irreducible أي أن مخطط A شديد التوصيل (the graph of A is strongly connecteted) فإنه توجد قيمة ذاتية وحيدة أكبر من صفر ويوجد شعاع ذاتي (eigenvector) وحيد يسمى شعاع برون فروبانيوس الذاتي قيمته المطلقة واحد وموجب أي كل عناصره أكبر من الصفر

في هذه الحالة يكون ما يلي:

    • كل القيم الذاتية الأخرى للمصفوفة A في قيمتها المطلقة أصغر من القيمة الذاتية المذكورة أعلاه أو تساويها.
    • القيمة الذاتية المذكورة أعلاه ذات تكرر جبري وهندسي يساوي 1 (algebraic and geometric multiplicity 1)
    • كل الأشعة الذاتية الأخرى هي عبارة عن عدد مضروب في شعاع برون فروبانيوس كما يمكن القول أنه إذا كانت المصفوفة منتظمة (regular) فإن القيم الذاتية الأخرى حتما أصغر من القيمة الذاتية التابعة لشعاع برون فروبانيوس.

الصيغة الرياضياتية للمبرهنة[عدل]

استعمالات المبرهنة[عدل]

Nuvola apps edu mathematics-ar.svg هذه بذرة مقالة عن الرياضيات تحتاج للنمو والتحسين، فساهم في إثرائها بالمشاركة في تحريرها.