مبرهنة دركليه حول المتتاليات الحسابية

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث

مبرهنة دركليه حول المتتاليات الحسابية (بالإنجليزية: Dirichlet's theorem on arithmetic progressions) أو مبرهنة دركليه حول الأعداد الأولية هي مبرهنة تنسب إلى عالم الرياضيات الألماني دركليه.[1][2][3] برهن عليها عام 1837، وتنص على أنه إذا كان a و q عددين صحيحين طبيعيين وأوليين فيما بينهما، فإنه يوجد عدد غير منته من الأعداد الأولية التي تكتب على شكل qn + a.

و بتعبير آخر، لائحة الأعداد a+3q, a+2q, a+q, a,... تحتوي على عدد غير منته من الأعداد الأولية.

أمثلة[عدل]

المتسلسلة

هي متسلسلة متباعدة.

التوزيع[عدل]

التاريخ[عدل]

صرح أويلر أن كل متتالية حسابية تحتوي على عدد غير منته من الأعداد الأولية. أما نص المبرهنة في شكلها الحالي وكما ذكر أعلاه، فلقد وضع من طرف عالم الرياضيات أدريان ماري ليجاندر إلا أنه لم يستطع البرهان عليها، بينما برهن عليها دركليه عام 1837.

البرهان[عدل]

انظر إلى دالة دركليه اللامية وإلى نظرية الأعداد التحليلية.

تعميمات[عدل]

انظر أيضا[عدل]

مراجع[عدل]

  1. ^ p. 253.
  2. ^ Recherches d'analyse indéterminée», Histoire de l'Académie royale des sciences de Paris, 1785, p.  465-559 (p.  552 ).
  3. ^ Euler، Leonhard (1737). "Variae observationes circa series infinitas" [Various observations about infinite series]. Commentarii academiae scientiarum imperialis Petropolitanae. 9: 160–188. 

وصلات خارجية[عدل]

Nuvola apps edu mathematics-ar.svg
هذه بذرة مقالة عن الرياضيات بحاجة للتوسيع. شارك في تحريرها.