مبرهنة مورلي

من ويكيبيديا، الموسوعة الحرة
اذهب إلى التنقل اذهب إلى البحث
مثلث مورلي

في الهندسة الرياضية، تنص مبرهنة مورلي على أنه في أي مثلث، إن قاسمات الزوايا إلى ثلاث زوايا طبوقة تتقاطع في ثلاث نقاط مشكلة مثلث متساوي الأضلاع يسمى مثلث مورلي.[1][2][3] تم اكتشاف هذه المبرهنة في عام 1899 من قبل الرياضياتي الأمريكي فرانك مورلي.

تأخذ المبرهنة اهتماماً خاصة لعدم وجود طريقة في الهندسة الإقليدية لإنشاء قاسم ثلاثي لزاوية (تثليث زاوية)، وبالتالي عدم وجود طريقة لإنشاء مثلث مورلي المتساوي الأضلاع.

مراجع[عدل]

  1. ^ Clifford، Pickover (2010). Le Beau Livre des Maths. Dunod. ISBN 978-2-10-054640-4. 296 
  2. ^ J. Conway's proof, from Bogomolny. نسخة محفوظة 10 يوليو 2018 على موقع واي باك مشين.
  3. ^ Ces problèmes qui font les mathématiques (la trisection de l'angle), Publication de l'A.P.M.E.P., no  70, 1988, p.  54 . نسخة محفوظة 04 مارس 2016 على موقع واي باك مشين.
Dodecahedron.svg
هذه بذرة مقالة عن الهندسة الرياضية بحاجة للتوسيع. شارك في تحريرها.