هذه المقالة يتيمة. ساعد بإضافة وصلة إليها في مقالة متعلقة بها

مجموعة مشاركة

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث

في الرياضيات، لأي زمرة جزئية من الزمرة وأي عنصر من ، تتحدد بكونها المجموعة و بكونها المجموعة . يُقال عن المجموعة الجزئية من على الشكل لأي في أنها مجموعة مشاركة يسرى لـ ، والمجموعة الجزئية على الشكل يُقال عنها أنها مجموعة مشاركة يمنى لـ .

لأي زمرة جزئية ، نستطيع تحديد علاقة التكافؤ من خلال إذا كان لأي في . وتكون صفوف التكافؤ لعلاقة التكافؤ تلك هي بالضبط المجموعات المشاركة اليسرى لـ ، والعنصر من يكون في صف التكافؤ . وبالتالي تشكل المجموعات المشاركة اليسرى لـ تجزئة من .

من الصحيح أيضًا أن أي مجموعتين مشاركتين يسريين لـ تمتلك نفس العدد الأصلي، وبتعبير أخص فإن كل مجموعة مشاركة لـ تمتلك نفس العدد الأصلي مثل ، حيث هو العنصر المحايد. وبالتالي يكون العدد الأصلي لأي مجموعة مشاركة يسرى لـ مساويًا رتبة . ويُحصل على نفس النتائج بالنسبة للمجموعات المشاركة اليمنى، وفي الواقع نستطيع إثبات أن مجموعة المجموعات المشاركة اليسرى لـ تمتلك نفس العدد الأصلي لمجموعة المجموعات المشاركة اليمنى لـ .[1]

مصادر[عدل]

Nuvola apps edu mathematics-ar.svg
هذه بذرة مقالة عن الرياضيات بحاجة للتوسيع. شارك في تحريرها.