المحتوى هنا ينقصه الاستشهاد بمصادر، أي معلومات غير موثقة يمكن التشكيك بها وإزالتها.
هذه المقالة يتيمة. ساعد بإضافة وصلة إليها في مقالة متعلقة بها

مسألة بروكارد

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
Question book-new.svg
المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير_2013)

مسألة بروكارد هى إحدى المسائل التي لم يكتمل حلها في الرياضيات. المسألة تبحث عن أعداد صحيحة تحقق المعادلة

ولم يتم العثور إلا على ثلاثة حلول حتى يومنا هذا وهى (4 , 5) و (5 , 11) و (7 , 71 ) و ( 3 ، 4 )

الأعداد البُنّية[عدل]

الأعداد البُنّية هي أعداد صحيحة تنتمي إلى الزوج (m,n) التي تحقق شرط معضلة بروكارد : . (حيث ! هو رمز العاملي و ² هو رمز مربع عدد)

يوجد فقط 3 أزواج بنية:

(5,4) لأن 5²=25 = 4!+1=24+1=25

(11,5) لأن 11²=121=5!+1=120+1=121

(7,71) لأن 71² = 5041 = 7!+1=5040+1 = 5041

حدس إيردوس أنه يوجد 3 أزواج بنية فقط.[1]

المراجع[عدل]

Nuvola apps edu mathematics-ar.svg
هذه بذرة مقالة عن الرياضيات بحاجة للتوسيع. شارك في تحريرها.