مسلمات هلبرت

من ويكيبيديا، الموسوعة الحرة
اذهب إلى التنقل اذهب إلى البحث

بديهيات هلبرت (بالإنجليزية: Hilbert's axioms) هي مجموعة من عشرين مسلمة وضعت من قبل ديفيد هلبرت خصيصا لتشكل أساس المعالجة الحديثة للهندسة الإقليدية.[1][2][3] نشرت هذه المسلمات أول مرة في كتاب أسس الهندسة عام 1899. من المسلمات الأخرى المستعملة في الهندسة المستوية : مسلمات تارسكي ومسلمات بيركوف. وقد قدم هلبرت هذه المسلمات في خمس مجموعات. ضمت المجموعة الأولى مسلمات تجميعية، واشتملت المجموعة الثانية على مسلمات ترتيبية والمجموعة الثالثة على مسلمات الموافقة والمجموعة الرابعة على مسلمات الاتصال والمجموعة الخامسة والأخيرة على مسلمة التوازي.

مراجع[عدل]

  1. ^ Moore، E.H. (1902)، "On the projective axioms of geometry" (PDF)، Transactions of the American Mathematical Society، 3: 142–158، doi:10.2307/1986321 
  2. ^ Gronwall, T. H. (1919). "Review: Grundlagen der Geometrie, Fourth edition, Teubner, 1913" (PDF). Bull. Amer. Math. Soc. 20 (6): 325–326. doi:10.1090/S0002-9904-1914-02492-9. 
  3. ^ Sommer, Julius (1900). "Review: Grundlagen der Geometrie, Teubner, 1899" (PDF). Bull. Amer. Math. Soc. 6 (7): 287–299. doi:10.1090/s0002-9904-1900-00719-1. 

وصلات خارجية[عدل]

Nuvola apps edu mathematics-ar.svg
هذه بذرة مقالة عن الرياضيات بحاجة للتوسيع. شارك في تحريرها.