مصفوفة قطورة

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث

في الجبر الخطي، يقال عن مصفوفة مربعة A أنها قابلة للجدولة أو قابلة للتقطير إذا كانت مشابهة إلى مصفوفة قطرية، أي، إذا كان هناك مصفوفة انعكاسية P حيث أن P −1AP مصفوفة قطرية.[1] إذا كانت V فضاء شعاعي - بعدي، فإن الخارطة الخطية T : VV تدعى قابلة للجدولة إذا وجد أساس ل V بالنسبة لما هو ممثل في T بواسطة مصفوفة مجدولة.

الجدولة[عدل]

إذا كانت المصفوفة A قابلة للجدولة، أي أن،

فإن:

بكتابة P بشكل مصفوفة مجزأة من شعاعات أعمدتها

يمكن إعادة كتابة المعادلة السابقة كما يلي

ولذا فإن شعاع أعمدة P تكون شعاعات مميزة لـ A، والمدخل القطري المطابق له هو القيمة المميزة المطابقة.

مراجع[عدل]

  1. ^ Anton، H.؛ Rorres، C. (22 Feb 2000). Elementary Linear Algebra (Applications Version) (الطبعة 8th). John Wiley & Sons. ISBN 978-0-471-17052-5. 

انظر أيضا[عدل]

Nuvola apps edu mathematics-ar.svg
هذه بذرة مقالة عن الرياضيات بحاجة للتوسيع. شارك في تحريرها.