معادلة الحرارة

من ويكيبيديا، الموسوعة الحرة
اذهب إلى التنقل اذهب إلى البحث
نمذجة ثنائية الأبعاد لمعادلة الحرارة في أنبوب ساخن يجري تبريده.

معادلة الحرارة أو معادلة الانتشارية أو معادلة توصيل الحرارة (بالإنجليزية: Heat equation) معادلة تفاضلية جزئية من الدرجة الثانية وهي معادلة تصف التوصيل الحراري وتغير الحرارة في الأجسام.[1][2][3] وقبل أن يتقدم القارئ للمعادلة عليه أن يدرك المعنى الفيزيائي للحرارة ويفرق بينها وبين درجة الحرارة. والمثال المألوف في هذا السياق هو أن الحرارة المختزنة في حوض استحمام مملوء بالماء الدافئ أكبر من الحرارة المختزنة في كوب من الماء المغلي رغم أن درجة الحرارة في الكوب أعلى بكثير من درجة حرارة الماء في الحوض. ولهذه المعادلة استعمالات في عدة مجالات من صناعة المحركات مرورا بعلم الأحياء حيث تعرف بمعادلة الانتشارية وحتى الميكانيكا الإنشائية.

الصياغة الرياضية[عدل]

المعادلة في بعد واحد[عدل]

معادلة الحرارة في بعد واحد (x) هي أبسط صيغ المعادلة وتصف معدل تغير الحرارة في قضيب نحيف وطويل لدرجة يمكن حينها غض الطرف عن انتقال الحرارة في بقية الأبعاد نتيجة ضآلة تأثيرها. وتعطى المعادلة بحسب الصيغة التالية وهي مشتقة من قانون فورييه وقانون حفظ الطاقة.

حيث : تمثل الانتشارية الحرارية.

المعادلة في ثلاثة أبعاد[عدل]

في وسط متجانس[عدل]

في وسط متجانس ثلاثي الأبعاد، فإن معادلة الحرارة للدالة : تصاغ حسب الآتي:

حيث رمز مؤثر لابلاس و رمز الانتشارية الحرارية للوسط.

في وسط لا متجانس[عدل]

أما إذا كان الوسط لا متجانسا مثل جسم الإنسان حيث تختلف الخواص الحرارية للجلد عن الخواص الحرارية في العضلات عنها في الأحشاء عنها في الدم عنها في السوائل الموجودة في الجسم. فإن المعادلة تأخذ الصيغة التالية.

حيث : دالة معطاة. وحين تكون مشتقة الدالة بالنسبة للزمن الصفر حيث فإن المعادلة تأخذ شكل معادلة بواسون.

الانتشارية الحرارية[عدل]

والانتشارية الحرارية تعطى بالصيغة التالية

حيث :

 : ثابت التوصيل الحراري (حسب نظام الوحدات الدولي وحدة : واط / (متر.كلفن))

 : الكثافة (كجم/ مترمكعب)

 : سعة الحرارة النوعية (جول / (كغم.كلفن))

مراجع[عدل]

  1. ^ Méthodes probabilistes pour les équations de la physique (باللغة Français). Eyrolles. 1989. ISBN 978-2212056761. 
  2. ^ Mathworld: Porous Medium Equationand the other related models have solutions with finite wave propagation speed. نسخة محفوظة 01 مايو 2017 على موقع واي باك مشين.
  3. ^ Intégrale de chemin en mécanique quantique : introduction. EDP Sciences. 2003. ISBN 978-2-86883660-1.