المحتوى هنا ينقصه الاستشهاد بمصادر، أي معلومات غير موثقة يمكن التشكيك بها وإزالتها.
يرجى إضافة وصلات داخلية للمقالات المتعلّقة بموضوع المقالة.

قائمة تكاملات الدوال المثلثية

من ويكيبيديا، الموسوعة الحرة
(بالتحويل من ملحق:قائمة تكاملات الدوال المثلثية)
اذهب إلى: تصفح، ‏ ابحث
Question book-new.svg
المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016)
Arwikify.svg
هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (مايو 2014)

هذه قائمة ببعض تكاملات الدول المتلتية. في كل هذه الصيغ نعتبر a غير منعدم و C هي ثابتة التكامل.

تكاملات مثلثية تحتوي فقط على الجيب (جا)[عدل]

\int\sin ax\;dx = -\frac{1}{a}\cos ax+C\,\!
\int\sin^2 {ax}\;dx = \frac{x}{2} - \frac{1}{4a} \sin 2ax +C= \frac{x}{2} - \frac{1}{2a} \sin ax\cos ax +C\!
\int\sin a_1x\sin a_2x\;dx = \frac{\sin[(a_1-a_2)x]}{2(a_1-a_2)}-\frac{\sin[(a_1+a_2)x]}{2(a_1+a_2)}+C \qquad\mbox{(for }|a_1|\neq|a_2|\mbox{)}\,\!
\int\sin^n {ax}\;dx = -\frac{\sin^{n-1} ax\cos ax}{na} + \frac{n-1}{n}\int\sin^{n-2} ax\;dx \qquad\mbox{(for }n>0\mbox{)}\,\!
\int\frac{dx}{\sin ax} = \frac{1}{a}\ln \left|\tan\frac{ax}{2}\right|+C
\int\frac{dx}{\sin^n ax} = \frac{\cos ax}{a(1-n) \sin^{n-1} ax}+\frac{n-2}{n-1}\int\frac{dx}{\sin^{n-2}ax} \qquad\mbox{(for }n>1\mbox{)}\,\!
\int x\sin ax\;dx = \frac{\sin ax}{a^2}-\frac{x\cos ax}{a}+C\,\!
\int x^n\sin ax\;dx = -\frac{x^n}{a}\cos ax+\frac{n}{a}\int x^{n-1}\cos ax\;dx \qquad\mbox{(for }n>0\mbox{)}\,\!
\int_{\frac{-a}{2}}^{\frac{a}{2}} x^2\sin^2 {\frac{n\pi x}{a}}\;dx = \frac{a^3(n^2\pi^2-6)}{24n^2\pi^2}   \qquad\mbox{(for }n=2,4,6...\mbox{)}\,\!
\int\frac{\sin ax}{x} dx = \sum_{n=0}^\infty (-1)^n\frac{(ax)^{2n+1}}{(2n+1)\cdot (2n+1)!} +C\,\!
\int\frac{\sin ax}{x^n} dx = -\frac{\sin ax}{(n-1)x^{n-1}} + \frac{a}{n-1}\int\frac{\cos ax}{x^{n-1}} dx\,\!
\int\frac{dx}{1\pm\sin ax} = \frac{1}{a}\tan\left(\frac{ax}{2}\mp\frac{\pi}{4}\right)+C
\int\frac{x\;dx}{1+\sin ax} = \frac{x}{a}\tan\left(\frac{ax}{2} - \frac{\pi}{4}\right)+\frac{2}{a^2}\ln\left|\cos\left(\frac{ax}{2}-\frac{\pi}{4}\right)\right|+C
\int\frac{x\;dx}{1-\sin ax} = \frac{x}{a}\cot\left(\frac{\pi}{4} - \frac{ax}{2}\right)+\frac{2}{a^2}\ln\left|\sin\left(\frac{\pi}{4}-\frac{ax}{2}\right)\right|+C
\int\frac{\sin ax\;dx}{1\pm\sin ax} = \pm x+\frac{1}{a}\tan\left(\frac{\pi}{4}\mp\frac{ax}{2}\right)+C

تكاملات مثلثية تحتوي فقط على جيب التمام[عدل]

\int\cos ax\;\mathrm{d}x = \frac{1}{a}\sin ax+C\,\!
\int\cos^2 {ax}\;\mathrm{d}x = \frac{x}{2} + \frac{1}{4a} \sin 2ax +C = \frac{x}{2} + \frac{1}{2a} \sin ax\cos ax +C\!
\int\cos^n ax\;\mathrm{d}x = \frac{\cos^{n-1} ax\sin ax}{na} + \frac{n-1}{n}\int\cos^{n-2} ax\;\mathrm{d}x \qquad\mbox{(for }n>0\mbox{)}\,\!
\int x\cos ax\;\mathrm{d}x = \frac{\cos ax}{a^2} + \frac{x\sin ax}{a}+C\,\!
\int x^2\cos^2 {ax}\;\mathrm{d}x = \frac{x^3}{6} + \left( \frac {x^2}{4a} - \frac{1}{8a^3} \right) \sin 2ax + \frac{x}{4a^2} \cos 2ax +C\!
\int x^n\cos ax\;\mathrm{d}x = \frac{x^n\sin ax}{a} - \frac{n}{a}\int x^{n-1}\sin ax\;\mathrm{d}x\,= \sum_{k=0}^{2k+1\leq n} (-1)^{k} \frac{x^{n-2k-1}}{a^{2+2k}}\frac{n!}{(n-2k-1)!} \cos ax +\sum_{k=0}^{2k\leq n}(-1)^{k} \frac{x^{n-2k}}{a^{1+2k}}\frac{n!}{(n-2k)!} \sin ax  \!
\int\frac{\cos ax}{x} \mathrm{d}x = \ln|ax|+\sum_{k=1}^\infty (-1)^k\frac{(ax)^{2k}}{2k\cdot(2k)!}+C\,\!
\int\frac{\cos ax}{x^n} \mathrm{d}x = -\frac{\cos ax}{(n-1)x^{n-1}}-\frac{a}{n-1}\int\frac{\sin ax}{x^{n-1}} \mathrm{d}x \qquad\mbox{(for }n\neq 1\mbox{)}\,\!
\int\frac{\mathrm{d}x}{\cos ax} = \frac{1}{a}\ln\left|\tan\left(\frac{ax}{2}+\frac{\pi}{4}\right)\right|+C
\int\frac{\mathrm{d}x}{\cos^n ax} = \frac{\sin ax}{a(n-1) \cos^{n-1} ax} + \frac{n-2}{n-1}\int\frac{\mathrm{d}x}{\cos^{n-2} ax} \qquad\mbox{(for }n>1\mbox{)}\,\!
\int\frac{\mathrm{d}x}{1+\cos ax} = \frac{1}{a}\tan\frac{ax}{2}+C\,\!
\int\frac{\mathrm{d}x}{1-\cos ax} = -\frac{1}{a}\cot\frac{ax}{2}+C
\int\frac{x\;\mathrm{d}x}{1+\cos ax} = \frac{x}{a}\tan\frac{ax}{2} + \frac{2}{a^2}\ln\left|\cos\frac{ax}{2}\right|+C
\int\frac{x\;\mathrm{d}x}{1-\cos ax} = -\frac{x}{a}\cot\frac{ax}{2}+\frac{2}{a^2}\ln\left|\sin\frac{ax}{2}\right|+C
\int\frac{\cos ax\;\mathrm{d}x}{1+\cos ax} = x - \frac{1}{a}\tan\frac{ax}{2}+C\,\!
\int\frac{\cos ax\;\mathrm{d}x}{1-\cos ax} = -x-\frac{1}{a}\cot\frac{ax}{2}+C\,\!
\int\cos a_1x\cos a_2x\;\mathrm{d}x = \frac{\sin(a_2-a_1)x}{2(a_2-a_1)}+\frac{\sin(a_2+a_1)x}{2(a_2+a_1)}+C \qquad\mbox{(for }|a_1|\neq|a_2|\mbox{)}\,\!

تكاملات مثلثية تحتوي فقط على الظل[عدل]

\int\tan ax\;\mathrm{d}x = -\frac{1}{a}\ln|\cos ax|+C = \frac{1}{a}\ln|\sec ax|+C\,\!
\int \tan^2{x} \, \mathrm{d}x = \tan{x} - x +C
\int\tan^n ax\;\mathrm{d}x = \frac{1}{a(n-1)}\tan^{n-1} ax-\int\tan^{n-2} ax\;\mathrm{d}x \qquad\mbox{(for }n\neq 1\mbox{)}\,\!
\int\frac{\mathrm{d}x}{q \tan ax + p} = \frac{1}{p^2 + q^2}(px + \frac{q}{a}\ln|q\sin ax + p\cos ax|)+C \qquad\mbox{(for }p^2 + q^2\neq 0\mbox{)}\,\!
\int\frac{\mathrm{d}x}{\tan ax + 1} = \frac{x}{2} + \frac{1}{2a}\ln|\sin ax + \cos ax|+C\,\!
\int\frac{\mathrm{d}x}{\tan ax - 1} = -\frac{x}{2} + \frac{1}{2a}\ln|\sin ax - \cos ax|+C\,\!
\int\frac{\tan ax\;\mathrm{d}x}{\tan ax + 1} = \frac{x}{2} - \frac{1}{2a}\ln|\sin ax + \cos ax|+C\,\!
\int\frac{\tan ax\;\mathrm{d}x}{\tan ax - 1} = \frac{x}{2} + \frac{1}{2a}\ln|\sin ax - \cos ax|+C\,\!

تكاملات مثلثية تحتوي فقط على القاطع[عدل]

\int \sec{ax} \, \mathrm{d}x = \frac{1}{a}\ln{\left| \sec{ax} + \tan{ax}\right|}+C
\int \sec^2{x} \, \mathrm{d}x = \tan{x}+C
\int \sec^3 x \, dx = \frac{1}{2}\sec x \tan x + \frac{1}{2}\ln|\sec x + \tan x| + C.
\int \sec^n{ax} \, \mathrm{d}x = \frac{\sec^{n-2}{ax} \tan {ax}}{a(n-1)} \,+\, \frac{n-2}{n-1}\int \sec^{n-2}{ax} \, \mathrm{d}x \qquad (n \neq 1)\,\!
\int \frac{\mathrm{d}x}{\sec{x} + 1} = x - \tan{\frac{x}{2}}+C

تكاملات مثلثية تحتوي فقط على قاطع تمام[عدل]

\int \csc{ax} \, \mathrm{d}x = -\frac{1}{a}\ln{\left| \csc{ax}+\cot{ax}\right|}+C
\int \csc^2{x} \, \mathrm{d}x = -\cot{x}+C
\int \csc^n{ax} \, \mathrm{d}x = -\frac{\csc^{n-1}\left(ax\right)\cos\left(ax\right)}{a(n-1)} \,+\, \frac{n-2}{n-1}\int \csc^{n-2}{ax} \, \mathrm{d}x \qquad (n\neq1)\,\!
\int \frac{\mathrm{d}x}{\csc{x} + 1} = x - \frac{2\sin{\frac{x}{2}}}{\cos{\frac{x}{2}}+\sin{\frac{x}{2}}}+C
\int \frac{\mathrm{d}x}{\csc{x} - 1} = \frac{2\sin{\frac{x}{2}}}{\cos{\frac{x}{2}}-\sin{\frac{x}{2}}}-x+C