المحتوى هنا ينقصه الاستشهاد بمصادر، أي معلومات غير موثقة يمكن التشكيك بها وإزالتها.
هذه المقالة يتيمة. ساعد بإضافة وصلة إليها في مقالة متعلقة بها
يرجى إضافة وصلات داخلية للمقالات المتعلّقة بموضوع المقالة.

منحنى تربيعي

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
Question book-new.svg
المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016)
Arwikify.svg
هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (يناير 2016)

ألتربيعي (أو منحنى من الدرجة الرابعة) في الهندسة الوصفية هو منحنى فراغي يتم الحصول علية، في معظم الحالات، كتقاطع بين سطحين من الدرجة الثانية (مخروط, كرة, اسطوانة).

يمكن تحديد ألتربيعي عن طريق إيجاد نقاط مشتركة لعدة مقاطع عادة ما تجرى بمستويات متوازية بينها.

وفقاً للمواضع المتبادلة للسطحين المتقاطعين، يمكن تصنيف المنحنى ألتربيعي كما يلي :

  1. تربيعي بطيه واحدة (Monogrammica), عندما تتقاطع فقط مجموعة من رواسم السطحين
  2. تربيعي بطيتين (Digrammica) عندما تتقاطع جميع رواسم واحد من السطحين مع الأخر.
  3. نافذة فيفياني (Viviani's window), وهو حالة خاصة من التربيعي بطيتين, حيث واحد من رواسم السطحين المتقاطعة يكون متماس للسطح الأخر.

وصلات خارجية[عدل]

Midori Extension.svg
هذه بذرة مقالة بحاجة للتوسيع. شارك في تحريرها.