نظرية ذرية

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث

يشتمل نموذج النظرية الذرية الحالية على نواة عالية الكثافة تحيط بها "سحابة" احتمالية من الإلكترونات.

النظرية الذرية نظرية علمية عن طبيعة المادة، و هي تنص على أن المادة تتكون من وحدات منفصلة تدعى الذرات. بدأت النظرية الذرية كمفهوم فلسفي في اليونان القديمة و دخلت المجال العلمي في أوائل القرن التاسع عشر عندما أظهرت اكتشافات في مجال الكيمياء سلوك المادة كما لو أنها تتألف من ذرات.

اشتقت كلمة "ذرة" في اللغة الإنجليزية "Atom" من اليونانية القديمة من الصفة "Atoms" و التي تعني غير المرئي.[1] بدأ كيميائيو القرن التاسع عشر باستخدام هذا المصطلح مع تزايد عدد العناصر الكيميائية المُكتَشَفَة، و التي مثلت وحدات المادة غير القابلة للاختزال. على الرغم من بروز هذا المصطلح بشكل لافت مطلع القرن العشرين، من خلال التجارب المتنوعة عن الكهرومغناطيسية و النشاط الإشعاعي، اكتشف الفيزيائيون أن "الذرة غير القابلة للتقسيم" ائتلاف من جسيمات دون ذرية (بشكل أساسي الإلكترونات و البروتونات و النترونات) يمكن أن تتواجد بشكل منفصل عن بعضها البعض. في الواقع، في بعض البيئات و الظروف القاسية كالنجوم النيوترونية، حيث درجة الحرارة العالية و الضغط المرتفع، لا تتشكل الذرات على الإطلاق. بعد أن اِكتُشِف أن الذرات وحدات قابلة للتقسيم، اخترع الفيزيائيون مصطلح "الجسيمات الأولية" لوصف أجزاء الذرة غير القابلة للتقسيم أو التدمير. يدرس علم فيزياء الجسيمات الجسيمات دون الذرية، و يأمل الفيزيائيون في هذا المجال اكتشاف الطبيعة الأساسية الحقيقية للمادة.

التاريخ[عدل]

الذرية الفلسفية[عدل]

فكرة أن المادة مصنوعة من وحدات منفصلة فكرة قديمة جداً، و قد ظهرت في العديد من الثقافات القديمة كاليونان و الهند. على أي حال، لقد ظهرت هذه الأفكار في التفكير الفلسفي و اللاهوتي بدلاُ من الدليل و التجريب، و بسبب هذا، لم تُقنِع هذه الأفكار الجميع، و ظلت الذرية أحد النظريات المنافسة لتفسير طبيعة المادة. لم يتبنى العلماء الذرية قبل القرن التاسع عشر، عندما ظهرت اكتشافات كيميائية يمكن تفسيرها بسهولة باستخدام مفهوم الذرات.

جون دالتون[عدل]

ظهر قانونان حول التفاعلات الكيميائية قرب نهاية القرن الثامن عشر لا يتضمن إشارةً إلى فكرة النظرية الذرية. كان الأول هو قانون انحفاظ الكتلة الذي صاغه أنطوان لافوازييه عام 1789، و الذي ين على أن الكتلة الكلية في تفاعل كيميائي تبقى ثابتة (أي أن مجموع كتلة المواد المتفاعلة يساوي مجموع كتلة المواد الناتجة).[2] أما الثاني فهو قانون النسب الثابتة، و قد أُثبت هذا القانون للمرة الأولى على يد الكيميائي الفرنسي جوزيف لويس بروست عام 1799،[3] ينص هذا القانون على أن مركباً ما إذا فُصِل إلى عناصره المُكوِّنة فإن هذه العناصر دائماً تأخذ نفس النسب، بغض النظر عن كمية أو مصدر المادة الأصلية.

درس جون دالتون ما سبق و توسع فيه و طوّر قانون النسب المتضاعفة، الذي ينص على أنه إذا أمكن جمع عنصرين لتشكيل عدد من المركبات المحتملة، فإن النسبة بين الكتل المختلفة من أحد العنصرين التي تتحد مع كتلة ثابتة من العنصر الآخر تكون نسبة عددية صحيحة وبسيطة. على سبيل المثال، درس بروست أكاسيد القصدير و وجد أن كتلتها هي إما 88.1% قصدير و 11.9% أوكسجين أو 78.7% قصدير و 21.3% أوكسجين (و هي أوكسيد القصدير الثنائي و ثنائي أوكسيد القصدير على التوالي). لاحظ دالتون من هذه النسب المئوية أن 100 غرام من القصدير ستجتمع مع إما مع 13.5 غرام أو 27 غرام من الأوكسجين. حيث تشكل 13.5 و 27 النسبة 1:2. وجد دالتون أن النظرية الذرية للمادة يمكن أن تشرح هذا النموذج الكيميائي الشائع بشكل أنيق، ففي حالة أكاسيد القصدير التي بحثها بروست، سوف تتحد ذرة واحدة من القصدير مع ذرة أو ذرتين من الأوكسجين.[4]

آمن دالتون بأن النظرية الذرية قادرة على تفسير سبب امتصاص المياه للغازات المختلفة بنسب مختلفة، على سبيل المثال وجد أن الماء يمتص ثنائي أوكسيد الكربون بشكل أفضل من امتصاصه لغزا النتروجين.[5] افترض دالتون أن سبب هذا السلوك الاختلافات في الكتلة و مزيج جزيئات الغاز، بالإضافة إلى أن جزيئات ثنائي أوكسيد الكربون أثقل و أكبر من جزيئات النيتروجين.

اقترح دالتون أن كل عنصر كيميائي يتكون من ذرات نوع فريد واحد، و على الرغم أن هذه الذرات لا يمكن تدميرها أو تغييرها بوسائل كيميائية، فإنه من الممكن أن تجتمع لتشكل بنى أكثر تعقيداً (المركبات الكيميائية). كانت هذه أول نظرية علمية حقيقية عن الذرة، حيث توصل دالتون إلى استنتاجاته عن طريق التجريب.

ذرات و جزيئات متنوعة كما تظهر في كتاب جون دالتون "نظام جديد للفلسفة الكيميائية" عام 1808.


عام 1803 قدم دالتون شفوياً قائمته الأولى للأوزان الذرية النسبية لعدد من المواد. نُشِرت هذه الورقة عام 1805، لكنه لم يناقش بالضبط طريقة حصوله على الأرقام.[5] كُشِف للمرة الأولى عن طريقة الحساب عام 1807 من قبل معارفه توماس طومسون في كتاب "نظام الكيمياء" في الطبعة الثالثة منه. و أخيراً نشر دالتون حساباً كاملاً في كتابه الخاص "نظام جديد للفلسفة الكيميائية" بين عامي 1808 و 1810.

قدّر دالتون الأوزان الذرية استناداً لنسب الكتلة عند اتحادها مع ذرة الهيدروجين، التي اِعتُبرت واحدةً للقياس. على الرغم من أن دالتون لم يتصور وجود ذرات بعض العناصر متحدةً بشكل جزيئات- على سبيل المثال الأوكسجين النقي يوجد بشكل جزيئات أوكسجين كل واحدة منها تتألف من ذرتين. و اعتقد دالتون بصورة خاطئة أن أبسط مركب بين أي عنصرين هو دائماً المركب المكون من ذرة واحدة من أحدهما و ذرة من الآخر (لذا فقد اعتقد أن HO أبسط من H2O).[6] بالإضافة إلى سوء معداته و العيب في نتائجه، على سبيل المثال كان يعتقد عام 1803 أن ذرات الأوكسجين كانت أثقل بـ 5.5 مرات من ذرات الهيدروجين، لأنه قاس في الماء 5.5 غرام من الأوكسجين مقابل كل 1 غرام هيدروجين و اعتقد كذلك أن صيغة الماء هي HO. عام 1806اعتمد دالتون أرقاماً أفضل، حيث خلص إلى أن الوزن الذري للأوكسجين هو 7 أضعاف الهيدروجين بدلاً من 5.5، و قد اعتمد هذا الوزن لبقية حياته، بينما خلص آخرون عاصروه إلى أن ذرة الأوكسجين يجب أن تزن 8 أضعاف ذرة الهيدروجين إذا اعتمد صيغة دالتون لجزيء الماء HO، أو يجب أن يزن 16 ضعف ذرة الهيدروجين إذا اعتمد الصيغة الحالية (H2O).[7]

أفوجادرو[عدل]

صَحَّح أميديو أفوجادرو الخلل في نظرية دالتون من حيث المبدأ عام 1811. اقترح أفيجادرو أن حجماً متساوياً من أي غازين عند درجة حرارة و ضغط متساوي يحتوي هذا الحجم حينها على عدد متساوٍ من الجزيئات (بعبارة أخرى، كتلة جزيئات الغاز لا تؤثر على الحجم الذي يشغله الغاز).[8] و قد مكّن هذا القانون أفيجادرو من استنتاج الطبيعة الذرية الثنائية للعديد من الغازات عبر دراسة الأحجام التي تفاعلت معها، على سبيل المثال فإن 2 ليتر من الهيدروجين تتفاعل مع ليتر واحد من الأوكسجين لإنتاج ليترين من غاز بخار الماء (عند ضغط و درجة حرارة ثابتين)، و هذا يعني أن جزيئة الأوكسجين الواحدة تنقسم إلى جزيئتين من أجل تشكيل جزيئتي ماء. و هكذا كان أفيجادرو قادراً على تقديم تقديرات أكثر دقة للكتلة الذرية للأوكسجين و مختلف العناصر الأخرى، و استطاع التمييز بشكل واضح بين الجزيئات و الذرات.

الحركة البراونية[عدل]

عام 1827، لاحظ عالم النبات البريطاني روبرت براون أن جسيمات غبار الطلع داخل الماء تستمر في الحركة دون سبب واضح. فسّر أينشتاين هذه الحركة عام 1905 بأنها ناجمة عن جزيئات الماء التي تصدم حبات الطلع باستمرار، و وضغ نموذجاً رياضياً افتراضياً لوصف الحركة.[9] تم التحقق من صحة هذا النموذج تجريبياً عام 1908 من قبل الفيزيائي الفرنسي جن بيرين. وفرت الحركة البراونية دليلاً إضافياً على صحة نظرية الجسيمات.

اكتشاف الجسيمات دون الذرية[عدل]

الأشعة المهبطية (زرقاء) تنبعث من المهبط، و تتحول إلى شعاع من خلال الشقوق، ثم تنحرف بمرورها بين لوحين كهربائيين.

كان اعتقادأن الذرات هي أصغر تقسيمات المادة سائداً حتى عام 1897، عندما اكتشف جوزيف طومسون الإلكترون من خلال عمله على الأشعة المهبطية.[10]
يتألف أنبوب كروكس من حاوية زجاجية مغلقة تحتوي على قطبين كهربائيين يفصل بينهما فراغ. عند تطبيق الجهد الكهربائي على الأقطاب، تنشأ أشعة مهبطية تصدم الزجاج عند النهاية المقابلة من الأنبوب. من خلال التجارب اكتشف طومسون أنه يمكن حرف هذه الأشعة بواسطة الحقل الكهربائي (إضافةً إلى المجالات المغناطيسية، المعروفة سابقاً)و خلص طومسون إلى أن هذه الأشعة، تتألف من جسيمات خفيفة مشحونة بشحنة كهربائية سالبة أطلق عليها اسم "الجسيمات" (سماها علماء آخرون فيما بعد "الإلكترونات")، بدلاً من كونها أحد أشكال الضوء. قاس طومسون نسبة الكتلة إلى الشحنة و اكتشف أنها كانت أصغر بـ 1800 مرة من نسبة الهيدروجين أصغر الذرات. كانت هذه الجسيمات على عكس أي نوع آخر معروف سابقاً.

اقترح طومسون أن الذرات قابلة للتقسيم و أن هذه الجسيمات هي بمثابة لبنات البناء.[11] اقترح طومسون لشرح الشحنة الكلية المحايدة للذرة أن هذه الجسيمات تتوزع في نموذج بحر من الشحنة الموجبة.[12]

اكتشاف النواة[عدل]

تجربة رذرفورد
يسار: Expectedالنتائج المتوقعة: جسيمات ألفا تمر من خلال نموذج طومسون للذرة مع انحراف لا يُذكر.
يمين: النتائج التي تمت ملاحظتها: انحراف بسيط للجسيمات بسبب الشحنة الموجبة للنواة.

دحض أحد طلاب طومسون السابقين نموذجه للذرة عام 1909، كان هذا الطالب إرنست رذرفورد الذي اكتشف أن معظم كتلة الذرة و شحنتها الموجبة مركَّزة في جزء صغير جداً من حجمها في مركزها.

قام زميان لرذرفورد و هما هانز غايغر و إرنست مارسدن بإجراء تجربة بناء على طلب رذرفورد، حيث قاما بإطلاق جسيمات ألفا على صفائح رقيقة من المعدن و قاسا انحراف هذه الجسيمات بواسطة شاشة مفلورة.[13] توقّع المجرِّبون أن تمر جسيمات ألفا دون انحراف كبير، بسبب كتلة الإلكترونات الصغير جداً و زخم جسيمات ألفا العالي و التركيز المنخفض من الشحنات الموجبة لنموذج طومسون. إلا أن جزءاً صغيراً من جسيمات ألفا انحرف بشدة. قال رذرفورد أن الشحنة الموجبة للذرة يجب أن تتركز في حجم صغير جداً حتى تتمكن من إنتاج حقل كهربائي بشكل كافٍ لحرف جسيمات ألفا بهذه الشدة.

دفعت التجربة السابقة رذرفورد إلى اقتراح نموذج كوكبي، حيث تحيط سحابة من الإلكترونات بنواة صغيرة جداً موجبة الشحن.[14]

الخطوات الأولى نحو نموذج فيزيائي كمي[عدل]

كان النموذج الكوكبي الذي اقترحه رذرفورد يشتمل على قصورين اثنين هامين. الأول أنه و على عكس الكوكاب التي تدور حول الشمس فإن الإلكترونات جسيمات مشحونة، و من المعروف أن الشحنة الكهربائية التسارعة تنبعث منها موجات كهرطيسية وفقاً لصيغة لامور في الكهرطيسية التقليدية. ينبغي أن تفقد الشحنة في المدار الطاقة و تتجه بشكل دوامي نحو النواة لتصطدم بها في جزء صغير من الثانية. أمّا المشكلة الثانية فكانت أن نموذج الكواكب لا يمكن أن يفسّر ذرا أطياف الامتصاص و الانبعاث العالية التي لوحظت.

نموذج بور للذرة.

أحدثت نظرية الكم ثورة في الفيزياء بدايات القرن العشرين، عندما افترض ماكس بلانك و ألبرت أينشتاين أن الطاقة الضوئية تنبعث أو تُمتص في كميات منفصلة تعرف بالكمّات (مفردها: كمّة، كوانتم). دمج نيلز بور هذه الفكرة عام 1913 في نموذجه الذرّي، حيث يمكن للإلكترون أن يدور في مدارات دائرية معينة حول النواة بزخم زاوي ثابت و طاقة، و بعدها عن النواة يتناسب طاقتها.[15] و وفق هذا النموذج لن يدور الإلكترون باتجاه النواة بحركة دوامية، لأنه لا يمكن أن يفقد الطاقة بشكل مستمر، و بدلاُ من ذلك فإن الإلكترون يمكن له أن يقوم بـ"قفزات كميّة" بين مستويات الطاقة المختلفة.[15] و عندما تدث هذه القفزات، فإن الضوءينبعث أو يُمتص بتردد مناسب للتغير في الطاقة (و بالتالي امتصاص و انبعاث الضوء يشكلان أطيافاً منفصلة).[15] لم يكن نموذج بور مثالياً، حيث أمكن التنبأ بخطوط طيف الهيدروجين، و لكن لم يكن من الممكن التنبأ بخطوط طيف الذرات عديدة الإلكترون. و الأسوأ من ذلك أنه مع تحسّن تكنولوجيا الطيفية ظهرت خطوط في طيف الهيدروجين لم يستطع نموذج بور تفسيرها. عام 1916 أضاف أرنولد سومرفيلد مدارات بيضوية الشكل لنموذج بور لشرح خطوط الانبعاث الإضافية، و لكن هذا جعل النموذج صعباً جداً للاستخدام، و على الرغم من ذلك كان النموذج قاصراً عن تفسير ذرات أكثر تعقيداً.

اكتشاف النظائر[عدل]

استمر الحال بإجراء التجارب بواسطة نواتج التفكك الإشعاعي حتى عام 1913 عندما اكتشف كيميائي الإشعاع فريدريك سودي أنه من الممكن تواجد أكثر من عنصر في كل موقع في الجدول الدوري.[16] و قد صِيغ مصطلح Isotope النظير من قبل مارجريت تود كاسم مناسب لهذه العناصر.

أجرى جوزيف جون طومسون في العام ذاته تجربةً مرر فيها تياراً من أيون النيون عبر مجالات مغناطيسية و كهربائية ليصطدم هذا التيار بلوحة فوتوغرافية في الطرف المقابل. لاحظ طومسون بقعتين متوهجتين على اللوحة ، و اقترح مساري انحراف مختلفين. اقترح طومسون تفسيراً بأن لبعض أيونات النيون كتلة و لبعضها الآخر كتلة أخرى.[17] تم تفسير هذا الاختلاف في الكتل عند اكتشاف النيترونات عام 1932.

اكتشاف الجسيمات النووية[عدل]

قام رذرفورد عام 1917 بقصف غاز النيتروجين بجسيمات ألفا و لاحظ نوى الهيدروجين المنبعثة من الغاز (عرف رذرفورد هذا مسبقاً لأنه قام بقصف الهيدروجين بجسيمات ألفا، و حصل على نوى الهيدروجين ضمن النواتج). خلص رذرفورد إلى أن نوى الهيدروجين نشأت من نواة ذرات النيتروجين نفسها (في الواقع، قسم رذرفورد النيتروجين عبر قصفه).[18] عرف رذرفورد من خلال عمله الخاص و عمل طلابه بور و هنري موسيلي أن الشحنة الإيجابية لأي ذرة يمكن دائماً أن تكون مساوية لشحنة عدد صحيح من نوى الهيدروجين. بالإضافة إلى أن الكتلة الذرية للعديد من العناصر تعادل تقريباً عدداً صحيحاً من كتلة نواة ذرة الهيدروجين-التي افترض لاحقاً أنها أخف الجسيمات- و هذان الاستنتاجان قاداه إلى استنتاج أن نوى الهيدروجين جسيمات مفردة و مكونات أساسية تدخل في تركيب جميع نوى الذرات. أسمى رذرفورد هذه الجسيمات البروتونات. وجد رذرفورد فيما بعد من خلال تجارب لاحقة أن الكتلة النووية لمعظم الذرات تتجاوز كتلة بروتونات تلك الذرة، لذا تكهن بأن الكتلة الفائضة تعود إلى جسيمات غير مشحونة غير معروفة أسماها نيوترونات. لاحظ فالتر بوته عام 1928 أن البريليوم عند قصفه بجسيمات ألفا يصدر إشعاعاً شديد الاختراق و محايد كهربائياً. اِعتُقِد بدايةً أنه إشعاع غاما عالي الطاقة بسبب تشابه التأثير على إلكترونات المعادن، إلا أن جيمس شادويك وجد أن التأين كان أشدّ من أن يُعزى إلى إشعاع كهرطيسي، حيث تم حفظ الطاقة و الزخم خلال التفاعل. عام 1932، كشف شادويك عن عناصر متنوعة كالهيدروجين و النيتروجين بإشعاع البريليوم الغامض و قام بقياس طاقة الجسيمات المشحونة المرتدة، و استنتج بناءاً على ذلك أن الإشعاع يتكون فعلاً من جسيمات محايدة كهربائياً و من غير الممكن أن تكون عديمة الكتلة كأشعة غاما، و بدلاً من كونها أشعة غاما ادعى شادويك أن هذه الجسيمات هي نيوترونات رذرفورد.[19] و قد حصل تشادويك على جائزة نوبل عام 1935 لاكتشافه النيوترون.

النماذج الفيزيائية الكمية للذرة[عدل]

المدارات الذرية الخمس الممتلئة لذرة النيون مفصولةً و مرتّبَةً بحسب ازدياد الطاقة من اليمين إلى اليسار، و تصبح المدارات الثلاثة الأخيرة متساوية في الطاقة كل مدار يحمل حتى إلكترونين و هي غالباً ما توجد في المناطق التي تمثلها الفقاعة الملونة.

اقترح لويس دي بروي عام 1924 أن جميع الجسيمات المتحركة-و خاصة الجسيمات دون الذرية كالإلكترونات- تظهر سلوكاً شبيهاً بالموجة. حاول إرفين شرودنغر المفتون بهذه الفكرة استكشاف فيما إذا كان من الممكن تفسير حركة الإلكترون في الذرة على نحو أفضل كموجة بدلاً من تفسيرها كجسيم. نشر شرودنجر معادلته الشهيرة عام 1926،[20] و تصف هذه المعادلة الإلكترون كدالة موجية بدلاً من جسيم نقطي. تنبأ هذا النهج بالعديد من الظواهر الطيفية التي فشل نموذج بور في شرحها. و على الرغم من أن النموذج كان مقنعاً رياضياً إلا أنه كان صعب التصور و لقي معارضةً.[21] أحد المنتقدين كان ماكس بورن، و اقترح بورن أن دالة موجة شرودنجر لم تصف الإلكترون بل وصفت جميع حالاته الممكنة، و بالتالي يمكن استخدام دالة شرودنجر لحساب احتمال العثور على إلكترون في مدار معين حول النواة.[22] مهد هذا التوفيق بين نظريتين متعارضتين (الجسيم و الموجة) إلى فكرة ازدواجية موجة-جسيم. على سبيل المثال ينكسر كالموجة و يمتلك كتلة كالجسيم.[23] نظراً لوصف الإلكترونات بالشكل الموجي أصبح من المستحيل رياضياً في الوقت ذاته حساب موضع و زخم الإلكترون، عُرف هذا فيما بعد بمبدأ الريبية لهايزنبرغ بعدما قدمه للمرة الأولى الفيزيائي النظري فيرنز هايزنبيرغ و قام بنشره عام 1927.[24] أبطل هذا نموذج بور ذو المدارات الدائرية المحددة بوضوح، حيث يصف النموذج الذري الحديث مواضع الإلكترونات في الذرة باحتمالات. حيث يمكن للإلكترون أن يتواجد على بعد أي مسافة من النواة، و لكن اعتماداً على مستوى الطاقة فإنه و بشكل أكثر تواتراً سيتواجد في مناطق معينة حول النواة دون غيرها، و يشار إلى هذه المناطق بالمدار الذري. تأتي المدارات بأشكال متعددة كالكرة أو الدمبل أو الطارة بالإضافة إلى نواة في الوسط.[25]

نظرية دالتون الذرية[عدل]

يعتبر الإنجليزي جون دالتون أول من أقترح نظرية الذرية للمادة في حوالي عام 1803م. أن مفهوم الذرة (غير قابلة للتجزئة) لم يبدأ مع دالتون ولكن مع علماء الاغريق قبل الميلاد والذين أوضحوا عدم إمكانية تقسيم المادة إلى الابد إلى اجزاء اصغر فاصغر وانه في نهاية المطاف يجب أن تكون هنالك جسيمات غير قابلة للتجزئة. لم تكن هذه الاقتراحات القديمة مبنية على نتائج تجارب علمية وإنما كانت ثمار تفكير عميق. تختلف نظرية دالتون عن ذلك كونها تعتمد على قوانين بقاء الكتلة والنسب الثابتة والتي اشتقت من العديد من الاستنتاجات المباشرة. يمكن التعبير عن النظرية التي اقترحها بالاتي :

1- تتكون المادة من العديد من الجسيمات الغير قابلة للتجزئة تسمى الذرات.

2- تتميز كل ذرات العنصر بنفس الخواص (الحجم، الشكل، الكتلة) والتي تختلف باختلاف العناصر.

3- يحدث التفاعل الكيميائي عند تبديل وضعية الذرات وتحويلها من منظومة لاخري.

لقد أثبتت نظرية دالتون نجاحها من خلال تفسيرها لبعض الحقائق القائمة في ذلك الزمان كما أنها استطاعت أيضا التنبؤ ببعض القوانين الغير مكتشفة :

اولا : تتضمن هذه النظرية قانون حفظ الكتلة حيث ان التفاعل الكيميائى لايفعل شيئا سوى اعادة توزيع الذرات ولم تفقد اي ذرة في هذة المنظومة وبالتالي تظل الكتلة ثابتة عند حدوث التفاعل الكيميائى.

ثانيا : تفسر هذه النظرية قانون النسب الثابتة. افترض ان مادة ما تتكون من عنصرين A وB. وان اي جزيئي من هذه المادة يتكون من ذرة واحدة منA وذرة واحدة من B يعرف الجزيئى بانة مجموعه ذرات مترابطة مع بعضها بقوة تسمح لها بالتصرف أو اعادة التنظيم كجسيم واحد. افترض أيضا ان كتلة الذرة A تكون ضعف كتلة الذرة B وبالتالى فان الذرة A تساهم بضعف الكتلة التي تساهم بها الذرة B في تكوين جزيئى واحد من هذه المادة الامر الذي يعني ان نسبة كتلة الذرة Aالى الذرة B هي 2/1.

اما إذا اخذنا مجموعة كبيرة من جزيئات هذة المادة فاننا نجد دائما ان عدد ذرات Aمتساويا لعدد ذرات B الامر الذي يعني انة بغض النظر عن حجم العينة فاننا دائما نحصل على نسبة كتلة Aالى B تساوي 2/1. بالمثل إذا فاعلنا A مع B لنحصل على هذا الجزيئى فنجد ان اي ذرة من A تتحد مع ذرة واحدة منB اما إذا خلطنا 100 ذرة من A مع 110 ذرة من B فنجد انة قد تبقت 10 ذرات من Bغير متفاعلة بعد اكتمال التفاعل.

ثالثا : لقد تنبأت نظرية دالتون بقانون النسب المتضاعفة الذي يقول : عند تكوين مركبين مختلفين من نفس العنصرين فان كتلتي أحد العنصرين اللتان تتفاعلان مع كتلة ثابتة من العنصر الاخر تكونان في شكل نسبة عددين بسيطين وصحيحين. قد يظهر هذا القانون وكانة أكثر تعقيدا من حقيقتة. دعنا نتحدث عن مركبين يتكونان من عنصري الأكسجين والكربون. إذا وجدنا في احدهما (أول اكسيد الكربون) ان 1.33 جم من الأكسجين متحدة مع 1.00 جم من الكربون بينما وجدنا في الاخر (ثاني اكسيد الكربون) ان 2.66 جم من الأكسجين متحدة مع 1.00 جم من الكربون فان نسبة كتلتي الأكسجين 2.66جم/1.33جم اللتان تتحدان مع كتلة ثابتة من الكربون 1.00 جم تكون في شكل عددين صحيحين :

تتفق هذه النسبة مع النظرية الذرية حيث ان أول أكسيد الكربون يحتوي على ذرة واحدة كربون تكون متحدة مع ذرة واحدة من الأكسجين بينما نجد ان ثاني اكسيد الكربون يحتوي ذرة كربون واحدة تكون متحدة مع ذرتين من الأكسجين. نسبة لان ثاني اكسيد الكربون ضعف ذرات الأكسجين المتحدة مع ذرة الكربون مثلما لأول أكسيد الكربون فان وزن الأكسجين في جزيئى ثاني اكسيد الكربون يجب أن يكون ضعف وزن الأكسجين في جزيئى أول اكسيد الكربون.

لقد أثبتت نظرية دالتون نجاحها من خلال تفسيرها لبعض الحقائق القائمة في ذلك الزمان كما أنها استطاعت أيضا التنبؤ ببعض القوانين الغير مكتشفة :

اولا : تتضمن هذه النظرية قانون حفظ الكتلة حيث ان التفاعل الكيميائى لايفعل شيئا سوى اعادة توزيع الذرات ولم تفقد اي ذرة في هذة المنظومة وبالتالي تظل الكتلة ثابتة عند حدوث التفاعل الكيميائى.

ثانيا : تفسر هذه النظرية قانون النسب الثابتة. افترض ان مادة ما تتكون من عنصرين A وB. وان اي جزيئي من هذه المادة يتكون من ذرة واحدة منA وذرة واحدة من B يعرف الجزيئى بانة مجموعه ذرات مترابطة مع بعضها بقوة تسمح لها بالتصرف أو اعادة التنظيم كجسيم واحد. افترض أيضا ان كتلة الذرة A تكون ضعف كتلة الذرة B وبالتالى فان الذرة A تساهم بضعف الكتلة التي تساهم بها الذرة B في تكوين جزيئى واحد من هذه المادة الامر الذي يعني ان نسبة كتلة الذرة Aالى الذرة B هي 2/1.

اما إذا اخذنا مجموعة كبيرة من جزيئات هذة المادة فاننا نجد دائما ان عدد ذرات Aمتساويا لعدد ذرات B الامر الذي يعني انة بغض النظر عن حجم العينة فاننا دائما نحصل على نسبة كتلة Aالى B تساوي 2/1. بالمثل إذا فاعلنا A مع B لنحصل على هذا الجزيئى فنجد ان اي ذرة من A تتحد مع ذرة واحدة منB اما إذا خلطنا 100 ذرة من A مع 110 ذرة من B فنجد انة قد تبقت 10 ذرات من Bغير متفاعلة بعد اكتمال التفاعل.

ثالثا : لقد تنبأت نظرية دالتون بقانون النسب المتضاعفة الذي يقول : عند تكوين مركبين مختلفين من نفس العنصرين فان كتلتي أحد العنصرين اللتان تتفاعلان مع كتلة ثابتة من العنصر الاخر تكونان في شكل نسبة عددين بسيطين وصحيحين. قد يظهر هذا القانون وكانة أكثر تعقيدا من حقيقتة. دعنا نتحدث عن مركبين يتكونان من عنصري الأكسجين والكربون. إذا وجدنا في احدهما (أول اكسيد الكربون) ان 1.33 جم من الأكسجين متحدة مع 1.00 جم من الكربون بينما وجدنا في الاخر (ثاني اكسيد الكربون) ان 2.66 جم من الأكسجين متحدة مع 1.00 جم من الكربون فان نسبة كتلتي الأكسجين 2.66جم/1.33جم اللتان تتحدان مع كتلة ثابتة من الكربون 1.00 جم تكون في شكل عددين صحيحين :

تتفق هذه النسبة مع النظرية الذرية حيث ان أول أكسيد الكربون يحتوي على ذرة واحدة كربون تكون متحدة مع ذرة واحدة من الأكسجين بينما نجد ان ثاني اكسيد الكربون يحتوي ذرة كربون واحدة تكون متحدة مع ذرتين من الأكسجين. نسبة لان ثاني اكسيد الكربون ضعف ذرات الأكسجين المتحدة مع ذرة الكربون مثلما لأول أكسيد الكربون فان وزن الأكسجين في جزيئى ثاني اكسيد الكربون يجب أن يكون ضعف وزن الأكسجين في جزيئى أول اكسيد الكربون.

نظرية الكم لبلانك[عدل]

إذا سخنت الأجسام الصلبة لدرجات حرارة مختلفة فأنها تبعث شعاعا يغطي مدي واسعا من الأطوال الموجبة. وان التوهج الأحمر الباهت لسخان الكهربي والضوء الأبيض الناصح لمصباح التنجيستن تمثلان أشعة منبعثة من أجسام صلبة سخنت لدرجات حرارة مختلفة.

لقد أوضحت القياسات التي أخذت لهذة الأجسام الساخنة بان مقدار طاقة الشعاع المنبعثة منها يعتمد على طول ألموجي. ولقد لاقت محاولات إيجاد تفسير لهذه العلاقة بواسطة نظرية الموجات المعروفة وقوانين الديناميكا الحرارية نجاحا جزئيا. استطاعت احدي النظريات تفسير هذه العلاقة عند الأطوال الموجية القصيرة ولكنها فشلت عند الأطوال الموجية الطويلة. أما النظرية الاخري فنجحت عند الأطوال الموجية الطويلة ولكنها فشلة عند الأطوال الموجية القصيرة. ولقد أتضح من ذلك أن هنالك شيء أساسيا ماز ل مفقودا في قوانين الفيزياء الكلاسيكية.

كما استطاع بلانك في عام 1900 من حل هذه المعضلة بافتراض يختلف اختلافا كبيرا عن المفاهيم المقبولة في ذلك الزمان. لقد افترضت الفيزياء الكلاسيكية بان الذرات والجزيئات تستطيع أن تمتص أو تبعث أي قيم عشوائية من طاقة الشعاع.أما بلانك فقد قال بان الذرات والجزيئات تستطيع ان تمتص ان تبعث الطاقة في شكل قيم منفصلة فقط مثل الحزم الصغيرة. ولقد أعطي بلانك اسم الكم أو الفوتون لاصغر كمية من الطاقة يمكن امتصاصها أو انبعاثها من الشعاع الكهرومغناطيسية. وتتناسب طاقة الكم الواحد (E) تناسبا طرد يا مع تردد الشعاع (y).

يرمز لثابت التناسب في هذه العلاقة بالحرف h ويسمى بثابت بلاك والذي له قيمة تقدر بحوالي 6.626X 10-34 جول ثانية.

E = h υ

تقول نظرية الكم لبلانك بان الطاقة تنبعث دائما في شكل مضاعفات القيمة (hu) مثل

h υ، 2h υ، 3h υ

وليس في شكل

1.67hu،.498 hu

وعندما قدم بلانك نظرية لم يستطع تفسير لماذا يجب التعامل مع الطاقة في شكل كمات بهذة ألطريقه مبتدئا بهذا الافتراض، لم يجد بلانك صعوبة في توافق النتائج العملية لانبعاث الأشعة من الأجسام الساخنة مع نظرية الكم وعلى طول مدي الأطوال الموجبة.

أن فكرة كمومية الطاقة بهذه الطريقة تبدو غريبة في بداية الأمر ولكن لمفهوم التكم (quantization) أشباه كثيرة فمثلا كمية الشحنة الكهربية محددة حيث يمكن ان تكون هناك مضاعفات رقمية صحيحة من وحدة الشحنة الكهربية (e) أو شحنة إليكترون واحد. والمادة أيضا كمية حيث أن عدد الاليكترونات والبروتونات والنيترونات والذرات في أي عينة من المادة يجب أن تكون كلها أرقام صحيحة.


انظر أيضاً[عدل]

  • تاريخ نظرية الجزيئات
  • ترتيب زمني لاكتشاف العناصر الكيميائية
  • مقدمة في ميكانيكا الكم
  • النظرية الحركية للغازات (حركة حرارية)
  • الذرية

قراءات للاستزادة[عدل]

  • الذرة في تاريخ الفكر البشري لبيرنارد بولمان(1998)
  • الجدول الدوري، قصته و أهميته لإيريك سيكري(2007)
  • النظرية الذرية لتشارلز أدولف فورتز(1881)

مراجع[عدل]

  1. ^ Berryman, Sylvia, "Ancient Atomism", موسوعة ستانفورد للفلسفة (Fall 2008 Edition), Edward N. Zalta (ed.) [1]
  2. ^ Weisstein, Eric W. "Lavoisier, Antoine (1743-1794)". scienceworld.wolfram.com. اطلع عليه بتاريخ 2009-08-01. 
  3. ^ Proust, Joseph Louis. "Researches on Copper", excerpted from Ann. chim. 32, 26-54 (1799) [as translated and reproduced in Henry M. Leicester and Herbert S. Klickstein, A Source Book in Chemistry, 1400–1900 (Cambridge, Massachusetts: Harvard, 1952)]. Retrieved on August 29, 2007.
  4. ^ Andrew G. van Melsen (1952). From Atomos to Atom. Mineola, N.Y.: Dover Publications. ISBN 0-486-49584-1. 
  5. ^ أ ب Dalton, John. "On the Absorption of Gases by Water and Other Liquids", in Memoirs of the Literary and Philosophical Society of Manchester. 1803. Retrieved on August 29, 2007.
  6. ^ Johnson, Chris. "Avogadro - his contribution to chemistry". تمت أرشفته من الأصل في 2002-07-10. اطلع عليه بتاريخ 2009-08-01. 
  7. ^ Alan J. Rocke (1984). Chemical Atomism in the Nineteenth Century. Columbus: Ohio State University Press. 
  8. ^ Avogadro, Amedeo (1811). "Essay on a Manner of Determining the Relative Masses of the Elementary Molecules of Bodies, and the Proportions in Which They Enter into These Compounds". Journal de Physique. 73: 58–76. 
  9. ^ Einstein، A. (1905). "Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen". Annalen der Physik. 322 (8): 549. Bibcode:1905AnP...322..549E. doi:10.1002/andp.19053220806. hdl:10915/2785. 
  10. ^ Thomson, J.J. (1897). "Cathode rays" ([facsimile from Stephen Wright, Classical Scientific Papers, Physics (Mills and Boon, 1964)]). Philosophical Magazine. 44 (269): 293. doi:10.1080/14786449708621070. 
  11. ^ Whittaker، E. T. (1951)، A history of the theories of aether and electricity. Vol 1، Nelson, London 
  12. ^ Thomson, J.J. (1904). "On the Structure of the Atom: an Investigation of the Stability and Periods of Oscillation of a number of Corpuscles arranged at equal intervals around the Circumference of a Circle; with Application of the Results to the Theory of Atomic Structure". Philosophical Magazine. 7 (39): 237. doi:10.1080/14786440409463107. 
  13. ^ Geiger, H (1910). "The Scattering of the ?-Particles by Matter". Proceedings of the Royal Society. A 83: 492–504. 
  14. ^ Rutherford, Ernest (1911). "The Scattering of ? and ? Particles by Matter and the Structure of the Atom" (PDF). Philosophical Magazine. 21 (4): 669. Bibcode:2012PMag...92..379R. doi:10.1080/14786435.2011.617037. 
  15. ^ أ ب ت Bohr, Niels (1913). "On the constitution of atoms and molecules" (PDF). Philosophical Magazine. 26 (153): 476–502. doi:10.1080/14786441308634993. 
  16. ^ "Frederick Soddy, The Nobel Prize in Chemistry 1921". Nobel Foundation. اطلع عليه بتاريخ 2008-01-18. 
  17. ^ Thomson, J.J. (1913). "Rays of positive electricity". Proceedings of the Royal Society. A 89 (607): 1–20. Bibcode:1913RSPSA..89....1T. doi:10.1098/rspa.1913.0057.  [as excerpted in Henry A. Boorse & Lloyd Motz, The World of the Atom, Vol. 1 (New York: Basic Books, 1966)]. Retrieved on August 29, 2007.
  18. ^ Rutherford, Ernest (1919). "Collisions of alpha Particles with Light Atoms. IV. An Anomalous Effect in Nitrogen". Philosophical Magazine. 37 (222): 581. doi:10.1080/14786440608635919. 
  19. ^ Chadwick, James (1932). "Possible Existence of a Neutron" (PDF). Nature. 129 (3252): 312. Bibcode:1932Natur.129Q.312C. doi:10.1038/129312a0. 
  20. ^ Schr?dinger, Erwin (1926). "Quantisation as an Eigenvalue Problem". Annalen der Physik. 81 (18): 109–139. Bibcode:1926AnP...386..109S. doi:10.1002/andp.19263861802. 
  21. ^ Mahanti, Subodh. "Erwin Schr?dinger: The Founder of Quantum Wave Mechanics". اطلع عليه بتاريخ 2009-08-01. 
  22. ^ Mahanti, Subodh. "Max Born: Founder of Lattice Dynamics". اطلع عليه بتاريخ 2009-08-01. 
  23. ^ Greiner, Walter. "Quantum Mechanics: An Introduction". اطلع عليه بتاريخ 2010-06-14. 
  24. ^ Heisenberg، W. (1927). "Uber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik". Zeitschrift für Physik (باللغة الألمانية). 43 (3–4): 172–198. Bibcode:1927ZPhy...43..172H. doi:10.1007/BF01397280. 
  25. ^ Milton Orchin؛ Roger Macomber؛ Allan Pinhas؛ R. Wilson. "The Vocabulary and Concepts of Organic Chemistry, Second Edition," (PDF). اطلع عليه بتاريخ 2010-06-14.