نيتروجين

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
Crystal Clear app clock.png
رجاء لا تقم بتحرير هذه الصفحة أثناء وجود هذه الرسالة. المستخدم الذي يقوم بالتحرير هنا يظهر اسمه في تاريخ الصفحة. إذا لم تتم أية عملية تحرير مؤخرا في هذه الصفحة رجاء أزل القالب. مهمة هذا القالب تقليل التضاربات في التحرير؛ رجاء أزله بين جلسات التحرير لتتيح للآخرين الفرصة لتطوير المقالة.
Fairytale key enter.png
لقد اقترح نقل صفحة نيتروجين إلى نتروجين. جار التوصل إلى اتفاق بشأن النقل في صفحة النقاش.
أكسجيننتروجينكربون
-

N

P
Element 1: هيدروجين (H), لا فلز
Element 2: هيليوم (He), غاز نبيل
Element 3: ليثيوم (Li), فلز قلوي
Element 4: بيريليوم (Be), فلز قلوي ترابي
Element 5: بورون (B), شبه فلز
Element 6: كربون (C), لا فلز
Element 7: نتروجين (N), لا فلز
Element 8: أكسجين (O), لا فلز
Element 9: فلور (F), هالوجين
Element 10: نيون (Ne), غاز نبيل
Element 11: صوديوم (Na), فلز قلوي
Element 12: مغنسيوم (Mg), فلز قلوي ترابي
Element 13: ألومنيوم (Al), فلز ضعيف
Element 14: سليكون (Si), شبه فلز
Element 15: فسفور (P), لا فلز
Element 16: كبريت (S), لا فلز
Element 17: كلور (Cl), هالوجين
Element 18: أرغون (Ar), غاز نبيل
Element 19: بوتاسيوم (K), فلز قلوي
Element 20: كالسيوم (Ca), فلز قلوي ترابي
Element 21: سكانديوم (Sc), فلز انتقالي
Element 22: تيتانيوم (Ti), فلز انتقالي
Element 23: فاناديوم (V), فلز انتقالي
Element 24: كروم (Cr), فلز انتقالي
Element 25: منغنيز (Mn), فلز انتقالي
Element 26: حديد (Fe), فلز انتقالي
Element 27: كوبالت (Co), فلز انتقالي
Element 28: نيكل (Ni), فلز انتقالي
Element 29: نحاس (Cu), فلز انتقالي
Element 30: زنك (Zn), فلز انتقالي
Element 31: غاليوم (Ga), فلز ضعيف
Element 32: جرمانيوم (Ge), شبه فلز
Element 33: زرنيخ (As), شبه فلز
Element 34: سيلينيوم (Se), لا فلز
Element 35: بروم (Br), هالوجين
Element 36: كريبتون (Kr), غاز نبيل
Element 37: روبيديوم (Rb), فلز قلوي
Element 38: سترونشيوم (Sr), فلز قلوي ترابي
Element 39: إتريوم (Y), فلز انتقالي
Element 40: زركونيوم (Zr), فلز انتقالي
Element 41: نيوبيوم (Nb), فلز انتقالي
Element 42: موليبدنوم (Mo), فلز انتقالي
Element 43: تكنيشيوم (Tc), فلز انتقالي
Element 44: روثينيوم (Ru), فلز انتقالي
Element 45: روديوم (Rh), فلز انتقالي
Element 46: بالاديوم (Pd), فلز انتقالي
Element 47: فضة (Ag), فلز انتقالي
Element 48: كادميوم (Cd), فلز انتقالي
Element 49: إنديوم (In), فلز ضعيف
Element 50: قصدير (Sn), فلز ضعيف
Element 51: إثمد (Sb), شبه فلز
Element 52: تيلوريوم (Te), شبه فلز
Element 53: يود (I), هالوجين
Element 54: زينون (Xe), غاز نبيل
Element 55: سيزيوم (Cs), فلز قلوي
Element 56: باريوم (Ba), فلز قلوي ترابي
Element 57: لانثانوم (La), لانثانيدات
Element 58: سيريوم (Ce), لانثانيدات
Element 59: براسوديميوم (Pr), لانثانيدات
Element 60: نيوديميوم (Nd), لانثانيدات
Element 61: بروميثيوم (Pm), لانثانيدات
Element 62: ساماريوم (Sm), لانثانيدات
Element 63: يوروبيوم (Eu), لانثانيدات
Element 64: غادولينيوم (Gd), لانثانيدات
Element 65: تربيوم (Tb), لانثانيدات
Element 66: ديسبروسيوم (Dy), لانثانيدات
Element 67: هولميوم (Ho), لانثانيدات
Element 68: إربيوم (Er), لانثانيدات
Element 69: ثوليوم (Tm), لانثانيدات
Element 70: إتيربيوم (Yb), لانثانيدات
Element 71: لوتيشيوم (Lu), لانثانيدات
Element 72: هافنيوم (Hf), فلز انتقالي
Element 73: تانتالوم (Ta), فلز انتقالي
Element 74: تنجستن (W), فلز انتقالي
Element 75: رينيوم (Re), فلز انتقالي
Element 76: أوزميوم (Os), فلز انتقالي
Element 77: إريديوم (Ir), فلز انتقالي
Element 78: بلاتين (Pt), فلز انتقالي
Element 79: ذهب (Au), فلز انتقالي
Element 80: زئبق (Hg), فلز انتقالي
Element 81: ثاليوم (Tl), فلز ضعيف
Element 82: رصاص (Pb), فلز ضعيف
Element 83: بزموت (Bi), فلز ضعيف
Element 84: بولونيوم (Po), شبه فلز
Element 85: أستاتين (At), هالوجين
Element 86: رادون (Rn), غاز نبيل
Element 87: فرانسيوم (Fr), فلز قلوي
Element 88: راديوم (Ra), فلز قلوي ترابي
Element 89: أكتينيوم (Ac), أكتينيدات
Element 90: ثوريوم (Th), أكتينيدات
Element 91: بروتكتينيوم (Pa), أكتينيدات
Element 92: يورانيوم (U), أكتينيدات
Element 93: نبتونيوم (Np), أكتينيدات
Element 94: بلوتونيوم (Pu), أكتينيدات
Element 95: أمريسيوم (Am), أكتينيدات
Element 96: كوريوم (Cm), أكتينيدات
Element 97: بركيليوم (Bk), أكتينيدات
Element 98: كاليفورنيوم (Cf), أكتينيدات
Element 99: أينشتاينيوم (Es), أكتينيدات
Element 100: فرميوم (Fm), أكتينيدات
Element 101: مندليفيوم (Md), أكتينيدات
Element 102: نوبليوم (No), أكتينيدات
Element 103: لورنسيوم (Lr), أكتينيدات
Element 104: رذرفورديوم (Rf), فلز انتقالي
Element 105: دوبنيوم (Db), فلز انتقالي
Element 106: سيبورغيوم (Sg), فلز انتقالي
Element 107: بوريوم (Bh), فلز انتقالي
Element 108: هاسيوم (Hs), فلز انتقالي
Element 109: مايتنريوم (Mt), فلز انتقالي
Element 110: دارمشتاتيوم (Ds), فلز انتقالي
Element 111: رونتجينيوم (Rg), فلز انتقالي
Element 112: كوبرنيسيوم (Cn), فلز انتقالي
Element 113: أنون تريوم (Uut)
Element 114: فليروفيوم (Uuq)
Element 115: أنون بينتيوم (Uup)
Element 116: أنون هيكسيوم (Uuh)
Element 117: أنون سيبتيوم (Uus)
Element 118: أنون أوكتيوم (Uuo)
7N
المظهر
عديم اللون في الحالات الثلاثة، الغازية والسائلة والصلبة.


الخطوط الطيفية للنيتروجين
الخصائص العامة
الاسم، العدد، الرمز نتروجين، 7، N
تصنيف العنصر لا فلز
المجموعة، الدورة، المستوى الفرعي 15، 2، p
الكتلة الذرية 14.0067غ·مول−1
توزيع إلكتروني 1s2 2s2 2p3
توزيع الإلكترونات لكل غلاف تكافؤ 2, 5 (صورة)
الخصائص الفيزيائية
الطور غاز
الكثافة (0 °س، 101.325 كيلوباسكال)
1.251 غ/ل
كثافة السائل عند نقطة الغليان 0.808 غ·سم−3
نقطة الانصهار 63.153 ك، -210.00 °س، -346.00 °ف
نقطة الغليان 77.36 ك، -195.79 °س، -320.3342 °ف
نقطة ثلاثية 63.1526 كلفن (-210°س)، 
12.53 كيلوباسكال
النقطة الحرجة 126.19 ك، 3.3978 ميغاباسكال
حرارة الانصهار N2) 0.72) كيلوجول·مول−1
حرارة التبخر N2) 5.56) كيلوجول·مول−1
السعة الحرارية (25 °س) (N2)
29.124 جول·مول−1·كلفن−1
ضغط البخار
ض (باسكال) 1 10 100 1 كيلو 10 كيلو 100 كيلو
عند د.ح. (كلفن) 37 41 46 53 62 77
الخصائص الذرية
أرقام الأكسدة 5، 4، 3، 2، 1، -1، -2، -3
(أكاسيده حمضية)
الكهرسلبية 3.04 (مقياس باولنغ)
طاقات التأين الأول: 1402.3 كيلوجول·مول−1
الثاني: 2856 كيلوجول·مول−1
الثالث: 4578.1 كيلوجول·مول−1
نصف قطر تساهمي 1±71 بيكومتر
نصف قطر فان دير فالس 155 بيكومتر
خصائص أخرى
البنية البلورية نظام بلوري سداسي
المغناطيسية مغناطيسية معاكسة
الناقلية الحرارية 25.83 × 10−3 واط·متر−1·كلفن−1 (300 كلفن)
سرعة الصوت (غاز، 27 °س) 353 متر/ثانية
رقم الكاس 7727-37-9
النظائر الأكثر ثباتاً
المقالة الرئيسية: نظائر النتروجين
النظائر توافر طبيعي عمر النصف نمط الاضمحلال طاقة الاضمحلال (ميغا إلكترون فولت) ناتج الاضمحلال
13N مصطنع 9.965 min ε 2.220 13C
14N 99.634% 14N هو نظير مستقر وله 7 نيوترون
15N 0.366% 15N هو نظير مستقر وله 8 نيوترون
عرض نقاش تعديل

النتروجين (أو الآزوت) هو عنصر كيميائي رمزه N وعدده الذري 7، ويقع ضمن عناصر الدورة الثانية وعلى رأس المجموعة الخامسة عشر في الجدول الدوري وذلك كعنصر مجموعة رئيسي، حيث أن مجموعته تسمّى باسمه مجموعة النتروجين. يصنف النتروجين ضمن اللافلزات، ويكون في الشروط العادية من الضغط ودرجة الحرارة على شكل غاز عديم اللون والطعم والرائحة، وهو ثنائي الذرة N2.

إن النتروجين عنصر شائع في الكون، حيث يدخل في تركيب درب التبانة والمجموعة الشمسية، وعلى كوكب الأرض يشكّل غاز النتروجين 78% من الغلاف الجوي للأرض، وبالتالي هو أكثر العناصر الكيميائية النقية من حيث الوفرة؛ أما في القشرة الأرضية، فمن من النادر أن يوجد عنصر النتروجين على شكل أملاح لاعضوية. بالمقابل، يدخل عنصر النتروجين في الطبيعة على شكل عضوي في تركيب جميع الأنسجة الحيّة، وذلك بشكل أساسي في الأحماض الأمينية (وبالتالي في البروتينات)، وكذلك في الأحماض النووية DNA وRNA؛ وفي الصناعة يشكّل النتروجين العديد من المركّبات المهمة كالأمونيا وحمض النتريك والسيانيد، ويدخل أيضاً كعنصر مهم في صناعة الأسمدة.

التاريخ وأصل التسمية[عدل]

دانيال رذرفورد، ينسب إليه اكتشاف عنصر النتروجين

عرفت مركبات النتروجين منذ العصور الوسطى، فقد عرف حمض النتريك باسم ماء النار (aqua fortis)، كما عرف الماء الملكي (aqua regia)، وهو مزيج من حمض النتريك مع حمض الهيدروكلوريك، وسمي بالملكي لقدرته على إذابة الذهب. استعملت مركبات النتروجين لاحقاً في تحضير البارود ثم في صناعة الأسمدة.

اكتشف غاز النتروجين من قبل العالم دانيال رذرفورد سنة 1772، والذي أسماه حينها الهواء المضر أو المؤذي noxious air،[1][2] وذلك على الرغم من أنه لم يكن يعتبره كعنصر كيميائي مستقل، لكنه ميّزه عن الهواء المُثَبَّت، والذي كان يقصد به غاز ثنائي أكسيد الكربون في تلك الأحيان، حيث أن حقيقة أن هناك مكوّن للهواء لا يساعد على الاحتراق كانت معروفة بالنسبة لرذرفورد.[3] في الوقت نفسه تقريباً، دُرس النتروجين من قبل العلماء كارل فلهلم شيله وهنري كافنديش وجوزيف بريستلي، والذين أقروا أن النتروجين جزء من الهواء، وأشتروا إليه باسم الهواء المحروق أو هواء الفلوجستون. بالمقابل، قام أنطوان لافوازييه بتسمية ذلك الغاز الخامل الذي يطفئ اللهب ويميت الحيوانات باسم آزوت azote، وذلك من الكلمة الإغريقية ἄζωτος آزوتوس بمعنى لا حياة.[4] ولا يزال يشار إلى عنصر النتروجين باسم الآزوت في بعض اللغات مثل الفرنسية والإيطالية والروسية والتركية. بالمقابل يشار إلى هذا العنصر في اللغة الألمانية باسم Stickstoff، بمعنى المادة المطفئة للهب.

جان أنطوان شابتال، مبتدع لفظ نتروجين

أما كلمة نتروجين فقد ابتدعت من الكيميائي جان أنطوان شابتال وذلك من الإغريقية νίτρον نطرون (والتي كانت تشير إلى مصطلح يشمل ملح النتر، وفي الوقت نفسه إلى كربونات الصوديوم، إذ لم يكن يميز بينهما)، ومن -γενής جين بمعنى مولّد؛ أي أن الكلمة تحمل معنى مولّد النتر. كان شابتال يريد بذلك الإشارة إلى النتر، وهي المادة الكيميائية (نترات البوتاسيوم) التي كانت لازمة من أجل إنتاج حمض النتريك، والذي كان قد اكتشف أنه يحوي على غاز النتروجين.[5]

مع تطور البحث العلمي، دخل النتروجين في العديد من التجارب الفيزيائية والكيميائية. ففي سنة 1910 قام جون ويليام ستروت، المعروف باسم لورد رايلي، بالقيام بتجربة اكتشف فيها النتروجين الفعّال، وهو عبارة عن متآصل أحادي الذرة للنتروجين، والذي تحصّل عليه في جهاز أنبوب التفريغ على شكل غمامة ذات لون أصفر ساطع من النتروجين الذري، والذي تفاعل بدوره بشكل انفجاري مع الزئبق، حيث تشكّل نتريد الزئبق.[6]

أدى تطوّر التقنيات الصناعية إلى ظهور تقنيات أدت إلى تثبيت النتروجين مثل عملية فرانك-كارو (1895–1899) وعملية أوستفالد (1902) وعملية هابر-بوش (1908–1913)، مما سهّل من إمكانية استحصال مركبات النتروجين المختلفة.[7]

الوفرة الطبيعية[عدل]

يشكّل غاز النتروجين (N2) أكبر نسبة في الغازات المكوّنة للغلاف الجوّي للأرض، حيث أنّ نسبته تبلغ 78.08% حجماً في الهواء الجاف، و75.53% وزناً في الهواء الجاف.[8] أمّا في القشرة الأرضية فإن النتروجين قليل الوفرة الطبيعية نسبياً، إذ أن المعادن الحاوية على النتروجين غالباً ما تكون على شكل مثل أملاح مثل نترات البوتاسيوم (ملح بيتر) أونترات الصوديوم (ملح تشيلي) أوملح النشادر، وجميع هذه الأملاح منحلة، لذلك يندر وجود ترسبات معدنية منها.

إن النتروجين هو عنصر شائع الانتشار في الكون، إذ يقدّر أن ترتيبه السابع من حيث وفرة العناصر الكيميائية بالنسبة لكتلتها في درب التبانة.[9] ينشأ عنصر النتروجين في الكون نتيجة تفاعلات الانصهار النجمي وذلك من عنصري الهيدروجين والكربون في المستعرّات الأعظمية،[9] وفي النجوم عن طريق دورة CNO.[10] اكتشفت آثار من النتروجين الجزيئي ومركّبات النتروجين في الوسط بين النجمي وذلك باستخدام المقراب الفضائي (FUSE).[11] كما يدخل النتروجين الجزيئي في تركيب الغلاف الجوي لقمر تيتان الذي يدور في فلك كوكب زحل.[12]

يدخل النتروجين في تركيب كافة المتعضيات الحية، فهو مكوّن أساسي للبروتينات والأحماض النووية، وجزيئات حيوية أخرى مثل الإنزيمات. يشكّل النتروجين عادةً ما بين 2 - 6% من الوزن الجاف للمادة النباتية، ووسطياً حوالي 1.5%.[13] يوجد النتروجين بكميّات وفيرة في فضلات الحيوانات وذرق الطيور، وذلك على شكل يوريا وحمض اليوريك وعلى شكل أملاح الأمونيوم.

الإنتاج[عدل]

يصنّف غاز النتروجين من ضمن الغازات الصناعية، التي لها تطبيقات مهمة، وينتج عن طريق إسالة الهواء بالضغط والتبريد ثم التقطير التجزيئي للهواء السائل لفصل غازي الأكسجين والنتروجين وذلك حسب عملية ليندة. أو عن طريق استخدام وسائل ميكانيكية باستخدام الهواء الغازي، أي باستخدام امتزاز تأرجح الضغط أو غشاء تناضحي عكسي. تتم الطريقة الأخيرة عن طريق تمرير الهواء بضغط مرتفع يتراوح بين 5 إلى 12 بار عبر غشاء اصطناعي، وبما أن سرعة الانتشار لغازات النتروجين والآرغون عبر هذه الأغشية أبطأ من التي لغازات الأكسجين] وبخار الماء وثنائي أكسيد الكربون، فإن غاز النتروجين بالتالي يزداد تركيزه في الطرف الداخلي للغشاء، وبإجراء ضبط لسرعة التدفق، يمكن الحصول على غاز النتروجين بنقاوة تصل إلى 99%.

تعد وسيلة تقطير الهواء الأسلوب التجاري للحصول على النتروجين، والذي يحصل عليه غالباً كناتج ثانوي من عملية إنتاج غاز الأكسجين، وذلك من أجل الصناعات المختلفة. يزوّد النتروجين عادةً في أسطوانات غاز مضغوط، ويرمز لها عندما تكون نقية وخالية من الأكسجين برمز OFN وذلك من oxygen-free nitrogen،[14] والتي يمكن أن تصل درجة نقاوتها إلى 99.99999%. يحصل على النتروجين عالي النقاوة، والذي تكون فيه نسبة الشوائب من الغازات أقل من 1 جزء في البليون (ppb)، عن طريق تكرار عملية الامتزاز/الانتزاز على الزيوليت.

يحضّر غاز النتروجين مخبرياً من المعالجة الحرارية لمحلول مائي من نتريت الأمونيوم أو محلول مائي لمزيج من كلوريد الأمونيوم مع نتريت الصوديوم:[15]

\mathrm{NH_4Cl\ +\ NaNO_2 \longrightarrow\  NaCl\ +\ 2\ H_2O\ +\ N_2 \uparrow}

تعطي طريقة التحضير هذه شوائب بكميات قليلة من غاز أحادي أكسيد النتروجين NO وحمض النتريك HNO3، والتي يمكن إزالتها بتمرير الغاز في محلول من ثنائي كرومات البوتاسيوم في حمض الكبريتيك.[15]

يمكن الحصول على غاز النتروجين بشكل نقي جداً في المختبر من إجراء عملية تفكك حراري لمركب أزيد الباريوم أو أزيد الصوديوم:[16][17]

\mathrm{2 \ NaN_3\  }\mathrm{\stackrel{\Delta T}{\longrightarrow} \ 2 \ Na\ +\ 3 \ N_2}
مخطط يظهر طريقة الحصول على النتروجين بطريقة الغشاء التناضحي العكسي.

النظائر[عدل]

هناك نظيرين مستقرين للنتروجين وهما نتروجين-14 14N و نتروجين-15 15N، لكن الوفرة الطبيعية الأكبر هي للنظير 14N، والتي تبلغ 99.634%. إن التفاعلات الحيوية مثل التمثّل والنترجة ونزع النتروجين تتحكم بنسب نظائر النتروجين الطبيعية في التربة، حيث تعمد تلك التفاعلات على تخصيب 15N في الركيزة وتقلله في الناتج.[18] أما في الغلاف الجوي، فإن هناك نسبة بسيطة من النتروجين الجزيئي يكون فيه كل من النظيرين الطبيعيين 14N15N موجودين (0.73%)، أما الباقي فهو تقريباً بالكامل من نتروجين-14.14N2.[19]

توجد أيضاً نظائر مصطنعة للنتروجين، يبلغ عددها عشراً، ومن بينها النظير نتروجين-13 13N، الذي يبلغ عمر النصف له عشر دقائق، أما باقي النظائر المصطنعة فلها عمر نصف من مرتبة عدة ثوان أو أقل.[20] يحضّر 16N من النظير أكسجين-16 16O في الماء، وله نصف عمر حوالي 7.1 ثانية،[20] ويصدر عند اضمحلاله أشعة غاما ذات طاقة مرتفعة تتراوح بين 5-7 ميغاإلكترون فولت.[20][21] يستخدم 16N كمبرّد في مفاعل الماء المضغوط ومفاعل الماء المغلي.[21]

الخصائص[عدل]

النتروجين من اللافلزات، وبسالبية كهربائية مقدارها 3.0، له خمسة إلكترونات في الغلاف الإلكتروني الخارجي، وهو ثلاثي التكافؤ في معظم مركباته. النتروجين النقي غير نشط كيميائياً، عديم اللون، جزيئه ثنائي الذرات في درجة حرارة الغرفة، يتكثف بدرجة حرارة 77 كالفن ويتجمد بدرجة 63 كالفن. والنتروجين السائل شائع لدراسة تأثير درجات الحرارة المنخفضة على الكائنات الحية. ومن خصائصه أيضا :

  • عديم اللون والطعم والرائحة.
  • صعب الذوبان في الماء ولايتفاعل بسهولة مع كثير من العناصر. مثل : انه يتفاعل مع الاكسجين في حدوث البرق فقط.
  • لا يساعد على الاشتعال.
  • يتحد مع شريط الماغنسيوم المشتعل مكونا مادة بيضاء وباضافة. القليل من الماء تتصاعد رائحة نفاذة جدا ((غاز النشادر ))
  • يمكن تكثيف غاز النتروجين وتحويلة الي حالة سائلة.

الاستخدامات[عدل]

أوسع استخدام تجاري للنتروجين هو كجزء في عملية تصنيع النشادر (الأمونيا) باستخدام عملية هابر. وتستخدم الأمونيا بعدها لإنتاج الأسمدة وحمض النيتريك. ويستخدم النتروجين كمادة غير نشطة في أجواء خزانات السوائل القابلة للانفجار، وأثناء تصنيع الأجزاء الإلكترونية كالصمامات الإلكترونية (ترانزيستورات) والدايود والدوائر المتكاملة، كما يستخدم في صناعة الفولاذ المقاوم للصدأ.

ويستخدم النتروجين السائل كمبرد للمنتجات الغذائية، إما بالغمر أو لأغراض النقل لحفظ الأجسام والخلايا التكاثرية كالحيوانات المنوية والبويضات الإنثوية، وللتخزين الآمن للعينات الحيوية. كما أنه يستخدم في دراسات حفظ الأجسام الحية. ويتم الحصول على النتروجين السائل بعملية التقطير للهواء السائل.

أملاح حمض النيتريك تشمل بعض المركبات المهمة، على سبيل المثال نترات البوتاسيوم الذي يدخل في تركيب البارود ونترات الأمونيوم الذي يدخل في تركيب الأسمدة ومخصبات التربة. المركبات العضوية التي يدخل فيها النتروجين، كالنيتروجليسرين الترينيترولولين تكون قابلة للانفجار عادة.

يستخدم حمض النيتريك كعامل أكسدة في الصورايخ فالتي تعمل بالوقود السائل، فالهايدرازين ومشتقاته تستخدم في وقود الصواريخ. كما يستخدم النتروجين السائل لعلاج الأورام الجلدية خاصة الحميدة منها (الثآليل). ومن أهمها الانيلين والبيريدين والاسيد


  1. ^ Lavoisier, Antoine Laurent. Elements of chemistry, in a new systematic order: containing all the modern discoveries. Courier Dover Publications. صفحة 15. ISBN 0-486-64624-6. 
  2. ^ Weeks، Mary Elvira (1932). "The discovery of the elements. IV. Three important gases". Journal of Chemical Education 9 (2): 215. Bibcode:1932JChEd...9..215W. doi:10.1021/ed009p215. 
  3. ^ Aaron J. Ihde, The Development of Modern Chemistry, New York 1964.
  4. ^ Elements of Chemistry, trans. Robert Kerr (Edinburgh, 1790; New York: Dover, 1965), 52.
  5. ^ nitrogen. Etymonline.com. Retrieved on 2011-10-26.
  6. ^ Lord Rayleigh's Active Nitrogen. Lateralscience.co.uk. Retrieved 2011-10-26.
  7. ^ Erisman، Jan Willem؛ Sutton، Mark A.؛ Galloway، James؛ Klimont، Zbigniew؛ Winiwarter، Wilfried (2008). "How a century of ammonia synthesis changed the world". Nature Geoscience 1 (10): 636. Bibcode:2008NatGe...1..636E. doi:10.1038/ngeo325. 
  8. ^ Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements (New ed.). New York, NY: Oxford University Press. ISBN 978-0-19-960563-7.
  9. ^ أ ب Croswell، Ken. Alchemy of the Heavens. Anchor. ISBN 0-385-47214-5. 
  10. ^ Bethe، H. A. (1939). "Energy Production in Stars". Physical Review 55 (5): 434–56. Bibcode:1939PhRv...55..434B. doi:10.1103/PhysRev.55.434. 
  11. ^ Meyer, Daved M.؛ Cardelli, Jason A.؛ Sofia, Ulysses J. (1997). "Abundance of Interstellar Nitrogen". The Astrophysical Journal 490: L103–L106. arXiv:astro-ph/9710162. Bibcode:1997ApJ...490L.103M. doi:10.1086/311023. 
  12. ^ Hamilton, Calvin J. "Titan (Saturn VI)". Solarviews.com. اطلع عليه بتاريخ 2007-12-24. 
  13. ^ Lincoln Taiz, Eduardo Zeiger: Physiologie der Pflanzen. Spektrum, Akad. Verlag, Heidelberg/Berlin 2000, ISBN 3-8274-0537-8.(لغة ألمانية)
  14. ^ Reich، Murray.؛ Kapenekas، Harry. (1957). "Nitrogen Purfication. Pilot Plant Removal of Oxygen". Industrial & Engineering Chemistry 49 (5): 869–873. doi:10.1021/ie50569a032. 
  15. ^ أ ب Bartlett، J. K. (1967). "Analysis for nitrite by evolution of nitrogen: A general chemistry laboratory experiment". Journal of Chemical Education 44 (8): 475. Bibcode:1967JChEd..44..475B. doi:10.1021/ed044p475. 
  16. ^ Eremets، M. I.؛ Popov، M. Y.؛ Trojan، I. A.؛ Denisov، V. N.؛ Boehler، R.؛ Hemley، R. J. (2004). "Polymerization of nitrogen in sodium azide". The Journal of Chemical Physics 120 (22): 10618–10623. Bibcode:2004JChPh.12010618E. doi:10.1063/1.1718250. PMID 15268087. 
  17. ^ G. Brauer (Hrsg.), Handbook of Preparative Inorganic Chemistry 2nd ed., vol. 1, Academic Press 1963, S. 457–460.
  18. ^ Flanagan، Lawrence B.؛ Ehleringer، James R؛ Pataki، Diane E. Stable Isotopes and Biosphere - Atmosphere Interactions: Processes and Biological Controls. صفحات 74–75. ISBN 9780080525280. 
  19. ^ "Atomic Weights and Isotopic Compositions for Nitrogen". NIST. اطلع عليه بتاريخ 2013-05-22. 
  20. ^ أ ب ت Audi, G.؛ Wapstra, A. H.؛ Thibault, C.؛ Blachot, J. & Bersillon, O. (2003). "The NUBASE evaluation of nuclear and decay properties". Nuclear Physics A 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. 
  21. ^ أ ب Neeb، Karl Heinz. The Radiochemistry of Nuclear Power Plants with Light Water Reactors. Berlin-New York: Walter de Gruyter. صفحة 227. ISBN 3-11-013242-7.