المحتوى هنا ينقصه الاستشهاد بمصادر، أي معلومات غير موثقة يمكن التشكيك بها وإزالتها.
هذه المقالة يتيمة. ساعد بإضافة وصلة إليها في مقالة متعلقة بها
يرجى إضافة وصلات داخلية للمقالات المتعلّقة بموضوع المقالة.

هندسة المنحنيات التفاضلية

من ويكيبيديا، الموسوعة الحرة
اذهب إلى التنقل اذهب إلى البحث
Question book-new.svg
المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018)

هندسة المنحنيات التفاضلية هي فرع من الهندسة يهتم بالمنحنيات الملساء في المستوي والفضاء الاقليدي باستعمال طرائق حسبان التفاضل والتكامل . ابتداء من العصور القديمة ، قد حققت العديد من المنحنيات ملموسة بدقة باستخدام نهج الاصطناعية . الهندسة التفاضلية يأخذ طريقا آخر : يتم تمثيل المنحنيات في الصيغة البارامترية، و خصائصها الهندسية و كمياتها المختلفةوالمرتبطة بها، مثل الانحناء وطول القوس، و يعبر بها عن طريق المشتقات و التكامل باستعمال حساب التفاضل والتكامل للمتجهات . واحدة من أهم الأدوات المستخدمة لتحليل منحنى هو الإطار Frenet ، إطار التحرك الذي يوفر نظام الإحداثيات في كل نقطة من المنحنى وهذا هو " أفضل تكييفها " ل منحنى قرب تلك النقطة.

نظرية المنحنيات هي أبسط من ذلك بكثير و أضيق نطاقا من نظرية السطوح والتعميمات في الفضاءات ذات الابعاد العليا, لأن المنحنى المنتظم في الفضاء الإقليدي لا يوجد لديه جوهرالهندسة intrinsic geometry. أي منحنى منتظم يمكن ان يكون بارامتريا بواسطة طول القوس ( في وضع الباراميتري الطبيعي ) . ان منحنيات الفضاء المختلفة تميز فقط من خلال الطريقة التي تثبت و تطور. من الناحية الكمية ، وهذا يقاس بثوابت الهندسة التفاضلية يسمى انحناء و التواء المنحنى . النظرية الأساسية في منحنيات تؤكد أن معرفة هذه الثوابت يحدد تماما المنحنى.

مراجع[عدل]

Nuvola apps edu mathematics-ar.svg
هذه بذرة مقالة عن الرياضيات بحاجة للتوسيع. شارك في تحريرها.