تأثير زيمان: الفرق بين النسختين

من ويكيبيديا، الموسوعة الحرة
[نسخة منشورة][نسخة منشورة]
تم حذف المحتوى تمت إضافة المحتوى
سطر 28: سطر 28:




أما في حالة وجود مجال مغناطيسي خارجي فتنشق كل من الحالتين الكموميتين 1S<sub>1/2</sub> ; 2P<sub>1/2</sub> إلى مستويين اثنين وهما: <math>m_j = 1/2, -1/2</math> ، حيث <math>m_j </math> عدد الكم المغناطيسي (وهو يحتوي في الحالة S على الدوران المغزلى للإلكترون فقط) ؛ في نفس الوقت وتنشق الحالة 2P<sub>3/2</sub> إلى أربعة مستويات للطاقة وهي :
أما في حالة وجود مجال مغناطيسي خارجي فتنشق كل من الحالتين الكموميتين 1S<sub>1/2</sub> و 2P<sub>1/2</sub> إلى مستويين اثنين وهما: <math>m_j = 1/2, -1/2</math> ، حيث <math>m_j </math> عدد الكم المغناطيسي (وهو يحتوي في الحالة S على الدوران المغزلى للإلكترون فقط) ؛ وفي نفس الوقت تنشق الحالة 2P<sub>3/2</sub> إلى أربعة مستويات للطاقة وهي :


:<math>m_j= 3/2; 1/2; -1/2 ; -3/2</math> حيث أن l=1 للمدار P، و<math>m_j </math>
:<math>m_j= 3/2; 1/2; -1/2 ; -3/2</math> حيث أن l=1 للمدار P، و<math>m_j </math>


في هذه الحالة هي محصلة الارطبات بين العزم المغزلي المغناطيسي للإلكترون والعزم المداري المغناطيسي (انظر الشكل).


[[ملف:Zeeman p s doublet.svg|400 px]]
[[ملف:Zeeman p s doublet.svg|400 px]]

نسخة 14:00، 2 فبراير 2016

تأثير زيمان هو ظاهرة إنشقاق خطوط الطيف لمصدر تحت تأثير مجال مغناطيسي ثابت إلى عدة خطوط؛اي ان تأثير زيمتن يشق خطوط الطيف إلى خطوط متوازية عندما يوضع مصدر الضوء في مجال مغناطيسي شديد . وهو تاثير يرجع إلى العالم الهولندي بيتر زيمان الذي اكتشف هذه الظاهرة في عام 1896م . وهذا التأثير مشابه لتأثير آخر يسمى تأثير شتارك وهو انشقاق خطوط الطيف إلي عدة خطوط في حالة تعرض مصدر الضوء إلى مجال كهربائي.

ويستخدم تأثير زيمان في تطبيقات عديدة في مطياف الرنين المغناطيسي، ومطياف رنين الدوران المغزلي للإلكترون، وفي التصوير بالرنين المغناطيسي (MRI). وكثيرا ما يستخدم تأثير زيمان للتعيين الدقيق للأطياف الامتصاصية للعناصر . وفي حالة قياس خطوط الطيف الامتصاصي، يسمى بتأثير زيمان العكسي.

ظهور إنشقاق لخطوط الطيف عندما تتأثر بمجال مغناطيسي أي عندما B لاتساوي صفر

مقدمة

توجد في الذرات توزيعات مختلفة للإلكترونات لها طاقة محددة ؛ تلك التوزيعات تشغل مستويات للطاقة مختلفة. في الحالة المستقرة للذرة (الذرة غير مثارة) تشغل الإلكترونات مستويات قاعية ground state في الذرة تتميز بقلة طاقتها . وعند إثارة الذرة مثلا بواسطة الحرارة لإغن بعض الإلكترونات تترك حالها القاعية وترتفع إلى مستوى طاقة أعلى. لذلك تظهر بعد ذلك عدة قفزات للإلكترونات من مدارات أعلى للطاقة إلى مدار أقل طاقة ، تظهر متمثلة في خطوط في طيفها. وفي وجود مجال مغناطيسي خارجي تنشق تلك الخطوط ، حيث يتأثر كل إلكترون في الذرة بالمجال المغناطيسي الخارجي بطريقة مختلفة بحسب ، هل عزمه المغناطيسي موازيا للمجال المغناطيسي الخارجي أم أنه معكوس الاتجاه . هذا يعتمد على عدد الكم المغزلي له . فالأعداد المغزلية المختلفة تُعبر عن حالات طاقة مختلفة . وعل الرغم من أنها فروقاً طفيفة في الطاقة، إلا أنها تؤدي إلى انقسام في خط الطيف ً تحت تأثير المجال المغناطيسي، فبدلا من ان يظهر انتقال إلكترون بين مستويين معينين للطاقة في هيئة خط واحد في الطيف ، فهو ينشق إلى خطين أو ثلاثة خطوط .


وطبقا للرسم التوضيحي، تتسم مستويات الطاقة للإلكترونات a, b, c بأن لها نفس الطاقة في غياب مجال مغناطيسي خارجي. كما ينطبق هذا أيضا علي مستويات الطاقة d, e, f التي توجد في حالة طاقة محددة منخفضة عن حالة a, b, c. وفي وجود المجال المغناطيسي تنشق مستويات الطاقة، وينتج عن ذلك أنه بينما كان يظهر لنا الإنتقال من a, b, c إلى d, e, f في خط واحد، يصبح لدينا عدة خطوط بسبب وجود عدد من الإنتقالات الممكنة بين a, b, c إلى المستويات d, e, f. ولكن لا يمكن للإلكترون القفز (الإنتقال) إلى جميع المستويات المنخفضة d, e, f بلا إستثناء، وإنما هو محكوم بقفزات مسموحة وأخرى غير مسموحة، بحسب قاعدة لذلك (انظر أسفله).

ونظرا لأن مقدار الإنشقاق في خطوط الطيف تتناسب تناسباً طرديا ً مع شدة المجال المغناطيسي الخارجي، يستخدم علماء الفلك تـأثير زيمان في قياس المجالات المغناطيسية للشـمس والنجوم الأخرى ومقارنتها؛ وذلك عن طريق قياس انشقاق خطوط طيف الشمس التي نرصدها ونحللها.

مثال : الانتقال الخاص بخط لايمان-ألفا في الهيدروجين

يشتمل الانتقال المنتمي لخط لايمان-ألفا في الهيدروجين الذي ينتمي إلى الارتباط المغزلي -المداري للإلكترون ، على الانتقالات التالية:

و

.

وطبقا للشكل ، يمثل الرسم على اليسار حالة إلكترون ذرة الهيدروجين في عدم وجود مجال مغناطيسي خارجي . في تلك الحالة يمكن للإلكترون أن يشغل مستويات الطاقة التالية : أو أو . وبالتالي يوجد إنتقالين للإلكترون من أعلى إلى أسفل إلى المستوي : لكي تصل الذرة لحالة الاستقرار ، أي تصدر الذرة خلال الإنتاقلين خطي الطيف  : و كما هو مبين في الشكل.


أما في حالة وجود مجال مغناطيسي خارجي فتنشق كل من الحالتين الكموميتين 1S1/2 و 2P1/2 إلى مستويين اثنين وهما: ، حيث عدد الكم المغناطيسي (وهو يحتوي في الحالة S على الدوران المغزلى للإلكترون فقط) ؛ وفي نفس الوقت تنشق الحالة 2P3/2 إلى أربعة مستويات للطاقة وهي :

حيث أن l=1 للمدار P، و


ونلاحظ هنا :

  • أن اتساع الانشقاق بين مستويات الطاقة مختلف باختلاف قيمة إذ أن مقدار الانشقاق يتناسب مع شدة تآثر الإلكترون مع المجال المغناطيسي الخارجي، والذي يحدده معامل يسمي (g - factor) والذي يعتمد على . ونرى إلي اليسار انشقاق الحالة الكمومية P إلى مستويين، وهذا الانشقاق يحدث حتي في غياب المجال المغناطيسي الخارجي، إذ أنه ناتج عن الارتباط المغزلي-المداري، المذكور أعلاه. ونلاحظ علي يمين الرسم الانشقاق الإضافي الناشئ عن تأثير زيمان، والذي يحدت تحت تأثير مجال مغناطيسي خارجي.
  • أنه ليست جميع انتقالات الإلكترون من المستويات العليا إلى المستويات السفلى مسموح بها. فهناك انتقالات مسموحة ،وأخرى غير مسموحة، وتوجد قاعدة تتحكم في تصرف الإلكترون في هذا المجال.

أنظر أيضا ً