فوتون: الفرق بين النسختين

من ويكيبيديا، الموسوعة الحرة
[مراجعة غير مفحوصة][نسخة منشورة]
تم حذف المحتوى تمت إضافة المحتوى
←‏التسمية: تم تصحيح خطأ مطبعي
وسمان: تحرير من المحمول تعديل في تطبيق الأجهزة المحمولة
الرجوع عن 4 تعديلات معلقة إلى نسخة 26617973 من Mr.Ibrahembot
وسمان: تحرير من المحمول تعديل ويب محمول
سطر 35: سطر 35:
| condensed_symmetries =''{{Ill-WD2|لف نظائري|id=Q836938}}''(''[[Total angular momentum|J]]''<sup>''[[تكافؤ (فيزياء)]][[C parity|C]]''</sup>) = 0,1(1<sup>--</sup>)<ref name="Particle_table_2009"/>
| condensed_symmetries =''{{Ill-WD2|لف نظائري|id=Q836938}}''(''[[Total angular momentum|J]]''<sup>''[[تكافؤ (فيزياء)]][[C parity|C]]''</sup>) = 0,1(1<sup>--</sup>)<ref name="Particle_table_2009"/>
}}
}}
'''الفوتون''' أو '''ضويء'''<ref>Larousse Arabe Dictionnaire ISBN 978 2 03 586221 1 صفحة 385</ref> {{إنج|Photon}} في [[الفيزياء]]، هو [[جسيم أولي]]، و[[الكم]] [[الضوء|للضوء]] وجميع الأشكال الأخرى [[إشعاع كهرومغناطيسي|للإشعاع الكهرومغناطيسي]]، و[[حامل القوة|الحامل]] [[القوة الكهرومغناطيسية|للقوة الكهرومغناطيسية]]. تسهل ملاحظة تأثيرات هذة [[القوة الكهرومغناطيسية|القوة]] في كلا المستويين الميكروسكوبي والماكروسكوبي، بسبب انعدام [[كتلة ساكنة|الكتلة الساكنة]] للفوتون الذي يسمح بالتآثر والتفاعل في المسافات الطويلة. كما هو حال كل [[الجسيمات الأولية]]، تقدم [[ميكانيكا الكم]] حالياً أفضل تفسير للفوتونات، وللفوتونات خاصية [[ازدواجية موجة-جسيم|ازدواجية الموجة والجسيم]]، مظهرة خصائص كلا من [[الموجات]] و[[الجسيمات]] حيث يمكن للفوتون الواحد [[الانكسار]] بواسطة [[العدسات]] و[[تداخل موجات|التداخل]]، ومن الممكن تصرفه [[جسيم أولي|كجسيم]] معطياً نتيجة محددة عند قياس وتحديد موضعه، ويختص بكونه معدوم [[كتلة السكون]]، ومعدوم [[الشحنة الكهربائية]]، بالإضافة لكونه يتنقل في الفراغ ب[[سرعة الضوء]].
'''الفوتون''' أو '''ضويء'''<ref>Larousse Arabe Dictionnaire ISBN 978 2 03 586221 1 صفحة 385</ref> {{إنج|Photon}} في [[الفيزياء]]، هو [[جسيم أولي]]، و[[الكم]] [[الضوء|للضوء]] وجميع الأشكال الأخرى [[إشعاع كهرومغناطيسي|للإشعاع الكهرومغناطيسي]]، و[[حامل القوة|الحامل]] [[القوة الكهرومغناطيسية|للقوة الكهرومغناطيسية]]. تسهل ملاحظة تأثيرات هذة [[القوة الكهرومغناطيسية|القوة]] في كلا المستويين الميكروسكوبي والماكروسكوبي، بسبب انعدام [[كتلة ساكنة|الكتلة الساكنة]] للفوتون الذي يسمح بالتآثر والتفاعل في المسافات الطويلة. كما هو حال كل [[الجسيمات الأولية]]، تقدم [[ميكانيكا الكم]] حالياً أفضل تفسير للفوتونات، وللفوتونات خاصية [[ازدواجية موجة-جسيم|ازدواجية الموجة والجسيم]]، مظهرة خصائص كلا من [[الموجات]] و[[الجسيمات]] حيث يمكن للفوتون الواحد [[الانكسار]] بواسطة [[العدسات]] و[[تداخل موجات|التداخل]]، ومن الممكن تصرفه [[جسيم أولي|كجسيم]] معطياً نتيجة محددة عند قياس وتحديد موضعه، ويختص بكونه معدوم [[كتلة السكون]]، ومعدوم [[الشحنة الكهربائية]]، بالإضافة لكونه يتنقل في الفراغ ب[[سرعة الضوء]].


طور [[ألبرت أينشتاين]] تدريجياً المفهوم الحديث للفوتون لتفسير الملاحظات التجريبية غير المطابقة لنموذج [[موجة كهرومغناطيسية|موجة الضوء]] التقليدي، حيث علل نموذج الفوتون على وجه الخصوص اعتماد طاقة [[الضوء]] على [[تردد]]ه، وفسر قابلية [[المادة]] و[[الإشعاع]] ليكونا في حالة [[توازن حراري]]. كما علل النموذج الحديث للفوتون الملاحظات الشاذة لخصائص [[إشعاع الجسم الأسود]]، التي سعى العديد من الفيزيائيين وعلى الأخص [[ماكس بلانك]]، إلى تفسيرها باستخدام نماذج شبه تقليدية، تصف [[الضوء]] [[معادلات ماكسويل|بمعادلات ماكسويل]] وتكمم الأجسام المادية المشعة والماصة [[الضوء|للضوء]]. بالرغم من مساهمة هذه النماذج الشبه تقليدية في تطوير [[ميكانيكا الكم]]، فإن التجارب اللاحقة تحققت من صحة فرضية [[أينشتاين]] بأن [[الضوء]] هو نفسه مكمم وأن الفوتونات هي [[كم]] [[الضوء]].
طور [[ألبرت أينشتاين]] تدريجياً المفهوم الحديث للفوتون لتفسير الملاحظات التجريبية غير المطابقة لنموذج [[موجة كهرومغناطيسية|موجة الضوء]] التقليدي، حيث علل نموذج الفوتون على وجه الخصوص اعتماد طاقة [[الضوء]] على [[تردد]]ه، وفسر قابلية [[المادة]] و[[الإشعاع]] ليكونا في حالة [[توازن حراري]]. كما علل النموذج الحديث للفوتون الملاحظات الشاذة لخصائص [[إشعاع الجسم الأسود]]، التي سعى العديد من الفيزيائيين وعلى الأخص [[ماكس بلانك]]، إلى تفسيرها باستخدام نماذج شبه تقليدية، تصف [[الضوء]] [[معادلات ماكسويل|بمعادلات ماكسويل]] وتكمم الأجسام المادية المشعة والماصة [[الضوء|للضوء]]. بالرغم من مساهمة هذه النماذج الشبه تقليدية في تطوير [[ميكانيكا الكم]]، فإن التجارب اللاحقة تحققت من صحة فرضية [[أينشتاين]] بأن [[الضوء]] هو نفسه مكمم وأن الفوتونات هي [[كم]] [[الضوء]].


في [[النموذج العياري]] [[فيزياء الجسيمات|لفيزياء الجسيمات]]، وصفت الفوتونات كنتيجة ضرورية للتماثل التام لقوانين [[الفيزياء]] في كل نقطة من [[الزمكان]]. خصائص التناظر القياسي هذا تحدد الخصائص الجوهرية للفوتونات [[الشحنة|كالشحنة]] و[[الكتلة]] و[[اللف المغزلي]]. وقد أدى نموذج الفوتون إلى تقدم هائل في مجال [[الفيزياء النظرية]] و[[الفيزياء التجريبية|التجريبية]]، [[الليزر|كالليزر]]، و[[تكاثف بوز وأينشتاين]]، و[[نظرية الحقل الكمومي]]، و[[مطال الاحتمال]] [[ميكانيكا الكم|لميكانيكا الكم]]، وقد تم تطبيقه على [[كيمياء ضوئية|الكيمياء الضوئية]]، و[[مجهر ضوئي|المجاهر عالية الوضوح]]، وقياسات المسافات الجزيئية. حديثاً تم دراسة الفوتونات بوصفها عناصر من أجهزة [[حاسوب كمومي|الحاسوب الكمومي]] والتطبيقات المتطورة في الاتصالات البصرية مثل التشفير الكمومي.
في [[النموذج العياري]] [[فيزياء الجسيمات|لفيزياء الجسيمات]]، وصفت الفوتونات كنتيجة ضرورية للتماثل التام لقوانين [[الفيزياء]] في كل نقطة من [[الزمكان]]. خصائص التناظر القياسي هذا تحدد الخصائص الجوهرية للفوتونات [[الشحنة|كالشحنة]] و[[الكتلة]] و[[اللف المغزلي]]. وقد أدى نموذج الفوتون إلى تقدم هائل في مجال [[الفيزياء النظرية]] و[[الفيزياء التجريبية|التجريبية]]، [[الليزر|كالليزر]]، و[[تكاثف بوز وأينشتاين]]، و[[نظرية الحقل الكمومي]]، و[[مطال الاحتمال]] [[ميكانيكا الكم|لميكانيكا الكم]]، وقد تم تطبيقه على [[كيمياء ضوئية|الكيمياء الضوئية]]، و[[مجهر ضوئي|المجاهر عالية الوضوح]]، وقياسات المسافات الجزيئية. حديثاً تم دراسة الفوتونات بوصفها عناصر من أجهزة [[حاسوب كمومي|الحاسوب الكمومي]] والتطبيقات المتطورة في الاتصالات البصرية مثل التشفير الكمومي.


يختزن الفوتون كمًا محددًا من [[طاقة|الطاقة]] حسب المعادلة:
يختزن الفوتون كمًا محددًا من [[طاقة|الطاقة]] حسب المعادلة:


:<math>E = \frac{hc}{\lambda}</math>،
:<math>E = \frac{hc}{\lambda}</math>،
حيث <math>h</math> هو [[ثابت بلانك]]، و<math>c</math> سرعة الضوء، و<math>\lambda</math> [[طول الموجة]].
حيث <math>h</math> هو [[ثابت بلانك]]، و<math>c</math> سرعة الضوء، و<math>\lambda</math> [[طول الموجة]].


== تطور تاريخي ==
== تطور تاريخي ==
{{النموذج العياري لفيزياء الجسيمات}}
{{النموذج العياري لفيزياء الجسيمات}}
{{مفصلة|ضوء}}
{{مفصلة|ضوء}}
[[ملف:Young Diffraction.png|تصغير|200بك||أظهرت [[تجربة الشق المضاعف]] [[توماس يونغ (عالم)|لتوماس ينغ]] في 1805 أن الضوء يمكن أن يتصرف مثل [[الموجة]]، مساندة بذلك في هزيمة نظريات الجسيم المبكرة للضوء.]]
[[ملف:Young Diffraction.png|تصغير|200بك||أظهرت [[تجربة الشق المضاعف]] [[توماس يونغ (عالم)|لتوماس ينغ]] في 1805 أن الضوء يمكن أن يتصرف مثل [[الموجة]]، مساندة بذلك في هزيمة نظريات الجسيم المبكرة للضوء.]]
كانت أغلب النظريات حتى [[قرن 18|القرن الثامن عشر]] تصف الضوء على أنه ناشئ عن جسيمات. أحد هذه النظريات المبكرة كانت قد وصفت في ''[[كتاب البصريات]]'' (1021) [[الحسن بن الهيثم|لابن الهيثم]]، الذي اعتبر أن [[شعاع (بصريات)|أشعة الضوء]] عبارة عن تيارات من جسيمات صغيرة جداً والتي تفتقر لكل المؤهلات الحسية عدا الطاقة.<ref name=Rashed>
كانت أغلب النظريات حتى [[قرن 18|القرن الثامن عشر]] تصف الضوء على أنه ناشئ عن جسيمات. أحد هذه النظريات المبكرة كانت قد وصفت في ''[[كتاب البصريات]]'' (1021) [[الحسن بن الهيثم|لابن الهيثم]]، الذي اعتبر أن [[شعاع (بصريات)|أشعة الضوء]] عبارة عن تيارات من جسيمات صغيرة جداً والتي تفتقر لكل المؤهلات الحسية عدا الطاقة.<ref name=Rashed>
{{Cite journal
{{Cite journal
|الأخير=Rashed |الأول=R.
|الأخير=Rashed |الأول=R.
سطر 59: سطر 59:
|الناشر=[[Cambridge University Press]]
|الناشر=[[Cambridge University Press]]
|doi=10.1017/S0957423907000355
|doi=10.1017/S0957423907000355
|اقتباس=في كتابه البصريات ''أصغر أجزاء من الضوء''، كما يسميها، تحتفظ فقط بخصائص يمكن التعامل معها بالهندسة التحليلية والتحقق منها تجريبياً.
|اقتباس=في كتابه البصريات ''أصغر أجزاء من الضوء''، كما يسميها، تحتفظ فقط بخصائص يمكن التعامل معها بالهندسة التحليلية والتحقق منها تجريبياً.
}}</ref> كان هذا رأي [[إسحاق نيوتن]] أيضا في طبيعة الضوء. لما كانت نماذج [[الجسيم]] غير قادرة على تفسير [[الانكسار]] و[[الحيود]] و[[الانكسار المزدوج]] للضوء، فقد اقتراح نظريات الموجة للضوء [[رينيه ديكارت]] (1637)،<ref>
}}</ref> كان هذا رأي [[إسحاق نيوتن]] أيضا في طبيعة الضوء. لما كانت نماذج [[الجسيم]] غير قادرة على تفسير [[الانكسار]] و[[الحيود]] و[[الانكسار المزدوج]] للضوء، فقد اقتراح نظريات الموجة للضوء [[رينيه ديكارت]] (1637)، <ref>
{{مرجع كتاب
{{مرجع كتاب
| الأخير = Descartes | الأول = R. | وصلة المؤلف = René Descartes
| الأخير = Descartes | الأول = R. | وصلة المؤلف = René Descartes
سطر 66: سطر 66:
| الناشر = [[Imprimerie de Ian Maire]]
| الناشر = [[Imprimerie de Ian Maire]]
| السنة = 1637
| السنة = 1637
}} {{fr icon}}</ref> [[روبرت هوك]] (1665)،<ref>
}} {{fr icon}}</ref> [[روبرت هوك]] (1665)، <ref>
{{مرجع كتاب
{{مرجع كتاب
| الأخير = Hooke | الأول = R. | وصلة المؤلف = Robert Hooke
| الأخير = Hooke | الأول = R. | وصلة المؤلف = Robert Hooke
سطر 79: سطر 79:
| السنة = 1678
| السنة = 1678
| العنوان = Traité de la lumière
| العنوان = Traité de la lumière
}} {{fr icon}}. An [http://www.gutenberg.org/etext/14725 ترجمة إنكليزية] متوافرة من [[مشروع غوتنبرغ]]</ref> ،بالرغم من ذلك, ظلت نماذج الجسيم هي الغالبة، بشكل رئيسي لتأثير [[إسحاق نيوتن]].<ref name="Newton1730">
}} {{fr icon}}. An [http://www.gutenberg.org/etext/14725 ترجمة إنكليزية] متوافرة من [[مشروع غوتنبرغ]]</ref>، بالرغم من ذلك، ظلت نماذج الجسيم هي الغالبة، بشكل رئيسي لتأثير [[إسحاق نيوتن]].<ref name="Newton1730">
{{مرجع كتاب
{{مرجع كتاب
| الأخير = Newton | الأول = I. | وصلة المؤلف = Isaac Newton
| الأخير = Newton | الأول = I. | وصلة المؤلف = Isaac Newton
سطر 90: سطر 90:
| الناشر = [[Dover Publications]]
| الناشر = [[Dover Publications]]
| الرقم المعياري=0-486-60205-2
| الرقم المعياري=0-486-60205-2
}}</ref> في أوائل القرن التاسع عشر، شرح كل من [[توماس يونغ (عالم)|توماس يونغ]] و[[أوغستين-جين فرسنل|فرسنل أوغست]] بوضوح عملية [[تداخل]] وانكسار الضوء ومع العام 1850 تم قبول نماذج الموجة عموما.<ref>
}}</ref> في أوائل القرن التاسع عشر، شرح كل من [[توماس يونغ (عالم)|توماس يونغ]] و[[أوغستين-جين فرسنل|فرسنل أوغست]] بوضوح عملية [[تداخل]] وانكسار الضوء ومع العام 1850 تم قبول نماذج الموجة عموما.<ref>
{{مرجع كتاب
{{مرجع كتاب
| الأخير = Buchwald | الأول = J.Z.
| الأخير = Buchwald | الأول = J.Z.
سطر 98: سطر 98:
| الرقم المعياري=0-226-07886-8
| الرقم المعياري=0-226-07886-8
| oclc = 18069573
| oclc = 18069573
}}</ref> في 1865، [[معادلات ماكسويل|تنبؤات]] [[جيمس كلرك ماكسويل]]<ref name="maxwell">
}}</ref> في 1865، [[معادلات ماكسويل|تنبؤات]] [[جيمس كلرك ماكسويل]]<ref name="maxwell">
{{cite journal
{{cite journal
| الأخير = Maxwell | الأول = J.C. | وصلة المؤلف = James Clerk Maxwell
| الأخير = Maxwell | الأول = J.C. | وصلة المؤلف = James Clerk Maxwell
سطر 115: سطر 115:
}} {{de icon}}</ref>—بدا أنها آخر صيحة لنماذج الضوء الجسيمية.
}} {{de icon}}</ref>—بدا أنها آخر صيحة لنماذج الضوء الجسيمية.


[[ملف:Light-wave-ar.svg|تصغير|340بك||في 1900، [[جيمس كلارك ماكسويل|ماكسويل]] [[معادلات ماكسويل|النموذج النظري للضوء]] على أنه تذبذب مجالين [[حقل كهربائي|كهربائي]] و[[حقل مغناطيسي|مغناطيسي]] بدت مكتملة. مع ذلك، العديد من الملاحظات لم يكن ممكنا تفسيرها بأي نموذج موجي من [[الإشعاع الكهرومغنطيسي]]، وهذا أدى للفكرة القائلة بأن طاقة الضوء كانت قد رزمت في ''كمّات'' الموصوف بالعلاقة E=hν. بينت تجارب لاحقة أن كمات الضوء هذه تحمل أيضا كمية تحرك وعليه، يمكن اعتبارها [[جسيم أولي|جسيمات]]: ولد مفهوم '''الفوتون'''، مؤديا إلى تفهم عميق للمجالات الكهربائية والمغنطيسية نفسها.]]
[[ملف:Light-wave-ar.svg|تصغير|340بك||في 1900، [[جيمس كلارك ماكسويل|ماكسويل]] [[معادلات ماكسويل|النموذج النظري للضوء]] على أنه تذبذب مجالين [[حقل كهربائي|كهربائي]] و[[حقل مغناطيسي|مغناطيسي]] بدت مكتملة. مع ذلك، العديد من الملاحظات لم يكن ممكنا تفسيرها بأي نموذج موجي من [[الإشعاع الكهرومغنطيسي]]، وهذا أدى للفكرة القائلة بأن طاقة الضوء كانت قد رزمت في ''كمّات'' الموصوف بالعلاقة E=hν. بينت تجارب لاحقة أن كمات الضوء هذه تحمل أيضا كمية تحرك وعليه، يمكن اعتبارها [[جسيم أولي|جسيمات]]: ولد مفهوم '''الفوتون'''، مؤديا إلى تفهم عميق للمجالات الكهربائية والمغنطيسية نفسها.]]
إن [[معادلة الموجة الكهرومغنطيسية|نظرية الموجة لماكسويل]]، مع ذلك، لا تحسب حسابا لجميع خصائص الضوء. تتنبأ نظرية ماكسويل بأن طاقة موجة الضوء تعتمد فقط على [[شدة|شدتها]]، ليس على [[تردد|ترددها]]، على الرغم من أن أنواع عديدة من التجارب المستقلة تظهر أن الطاقة الممنوحة بالضوء للذرات تعتمد على تردد الضوء فقط وليس شدته. على سبيل المثال، [[كيمياء ضوئية|بعض التفاعلات الكيميائية]] يتم إثارتها فقط عن طريق ضوء بتردد أعلى من حد معين. إذا كان هذا الضوء ذا تردد أقل فمهما بلغت شدته لا يحفز التفاعل. بالمثل، بالإمكان نزع الكترونات من صفيحة معدنية بتسليط ضوء ذي تردد عالي بقدر كاف عليها ([[تأثير كهروضوئي]])؛ تتعلق طاقة الالكترونات المنتزعة بتردد الضوء فقط، وليس الشدة.<ref>اعتماد التردد الإضاءة ص. 276f., التأثير الكهروضوئي قسم 1.4 في {{مرجع كتاب
إن [[معادلة الموجة الكهرومغنطيسية|نظرية الموجة لماكسويل]]، مع ذلك، لا تحسب حسابا لجميع خصائص الضوء. تتنبأ نظرية ماكسويل بأن طاقة موجة الضوء تعتمد فقط على [[شدة|شدتها]]، ليس على [[تردد|ترددها]]، على الرغم من أن أنواع عديدة من التجارب المستقلة تظهر أن الطاقة الممنوحة بالضوء للذرات تعتمد على تردد الضوء فقط وليس شدته. على سبيل المثال، [[كيمياء ضوئية|بعض التفاعلات الكيميائية]] يتم إثارتها فقط عن طريق ضوء بتردد أعلى من حد معين. إذا كان هذا الضوء ذا تردد أقل فمهما بلغت شدته لا يحفز التفاعل. بالمثل، بالإمكان نزع الكترونات من صفيحة معدنية بتسليط ضوء ذي تردد عالي بقدر كاف عليها ([[تأثير كهروضوئي]])؛ تتعلق طاقة الالكترونات المنتزعة بتردد الضوء فقط، وليس الشدة.<ref>اعتماد التردد الإضاءة ص. 276f., التأثير الكهروضوئي قسم 1.4 في {{مرجع كتاب
| الأخير=Alonso | الأول=M.
| الأخير=Alonso | الأول=M.
| الأخير2=Finn | الأول2=E.J.
| الأخير2=Finn | الأول2=E.J.
سطر 123: سطر 123:
| الرقم المعياري=0-201-00262-0
| الرقم المعياري=0-201-00262-0
| السنة=1968
| السنة=1968
}}</ref>.<ref group="ملاحظات">ينبغي فهم أنها "بغض النظر عن كمية الشدة" تشير إلى كميات شدتها تحت 10<sup>13</sup> W/cm<sup>2</sup> تقريبا والتي تبدأ عندها نقطة [[نظرية التشويش]] بالانهيار. المثير للاهتمام في موضوع الشدة، والذي يكون للضوء المرئي تقريبا فوق 10<sup>14</sup> W/cm<sup>2</sup>، يتنبأ الوصف الكلاسيكي للموجة أن الطاقة المكتسبة بواسطة الإلكترونات، تدعى [[طاقة بنديرو الدافعة]]. انظر أيضا <sup>[http://adsabs.harvard.edu/abs/1996AIPC..369.1234B]</sup>. بالمقارنة، فإن ضوء الشمس ليس سوى 0.1 W/cm<sup>2</sup>.</ref>
}}</ref>.<ref group="ملاحظات">ينبغي فهم أنها "بغض النظر عن كمية الشدة" تشير إلى كميات شدتها تحت 10<sup>13</sup> W/cm<sup>2</sup> تقريبا والتي تبدأ عندها نقطة [[نظرية التشويش]] بالانهيار. المثير للاهتمام في موضوع الشدة، والذي يكون للضوء المرئي تقريبا فوق 10<sup>14</sup> W/cm<sup>2</sup>، يتنبأ الوصف الكلاسيكي للموجة أن الطاقة المكتسبة بواسطة الإلكترونات، تدعى [[طاقة بنديرو الدافعة]]. انظر أيضا <sup>[http://adsabs.harvard.edu/abs/1996AIPC..369.1234B]</sup>. بالمقارنة، فإن ضوء الشمس ليس سوى 0.1 W/cm<sup>2</sup>.</ref>


=== اكتشاف الفوتون ===
=== اكتشاف الفوتون ===
يمكن تلخيص أبرز الاحداث التاريخية في اكتشاف الفوتون كما يلي:<!-- أتمنى أن يكون العنوان والمحتوى مناسب -->
يمكن تلخيص أبرز الاحداث التاريخية في اكتشاف الفوتون كما يلي:<!-- أتمنى أن يكون العنوان والمحتوى مناسب -->
* [[1900]] : وصف الفيزيائي [[ماكس بلانك]] الضوء وكل أشكال [[الطاقة]] الإشعاعية بأنها تيارات من [[جسيمات]] تسمى كمات وكل كم من الطاقة حزمة ولا يمكن تقسيمها، والفوتون كم من الطاقة [[الكهرومغنطيسية]].
* [[1900]] : وصف الفيزيائي [[ماكس بلانك]] الضوء وكل أشكال [[الطاقة]] الإشعاعية بأنها تيارات من [[جسيمات]] تسمى كمات وكل كم من الطاقة حزمة ولا يمكن تقسيمها، والفوتون كم من الطاقة [[الكهرومغنطيسية]].
* [[1902]] : العالم [[الفيزيائي]] [[فيليب أنتون لينارد]] لاحظ أن كمية [[الطاقة]] المعطاة لإلكترون اعتمدت فقط على لون الضوء الذي سطع على القطب الكهربائي.
* [[1902]] : العالم [[الفيزيائي]] [[فيليب أنتون لينارد]] لاحظ أن كمية [[الطاقة]] المعطاة لإلكترون اعتمدت فقط على لون الضوء الذي سطع على القطب الكهربائي.
* [[1905]] :العالم [[الفيزيائي]] [[ألبرت أينشتاين]] توصل إلى أن طاقة [[الفوتون]] تعتمد على طولها الموجي أو ترددها؛ فمثلا فوتون الضوء [[بنفسجي (لون)|البنفسجي]] له طاقة أعلى من فوتون الضوء [[أحمر|الأحمر]] لأن ضوء البنفسجي له تردد أعلى مما للضوء الأحمر.
* [[1905]] :العالم [[الفيزيائي]] [[ألبرت أينشتاين]] توصل إلى أن طاقة [[الفوتون]] تعتمد على طولها الموجي أو ترددها؛ فمثلا فوتون الضوء [[بنفسجي (لون)|البنفسجي]] له طاقة أعلى من فوتون الضوء [[أحمر|الأحمر]] لأن ضوء البنفسجي له تردد أعلى مما للضوء الأحمر.
سطر 164: سطر 164:
وهذه طاقة شعاع ضوء في منطقة طيف [[الأشعة تحت الحمراء]].
وهذه طاقة شعاع ضوء في منطقة طيف [[الأشعة تحت الحمراء]].


كما يمكن حساب طاقة الفوتون بمعرفة [[طول موجة|طول موجته]]، من المعادلة:
كما يمكن حساب طاقة الفوتون بمعرفة [[طول موجة|طول موجته]]، من المعادلة:
:<math>E = h \cdot \nu = h \cdot c / \lambda = \left(1{,}239\,841\,939\ \mathrm {eV\mu m}\right) / \lambda</math>
:<math>E = h \cdot \nu = h \cdot c / \lambda = \left(1{,}239\,841\,939\ \mathrm {eV\mu m}\right) / \lambda</math>
سطر 176: سطر 176:
وتكون طاقة الفوتون : E = 1 eV
وتكون طاقة الفوتون : E = 1 eV


وللمقارنة فإن شعاع ضوء ذو طول موجة 620 نانومتر يكون لونه برتقالي، وبالتالى تكون طاقته = 2 إلكترون فولت.
وللمقارنة فإن شعاع ضوء ذو طول موجة 620 نانومتر يكون لونه برتقالي، وبالتالى تكون طاقته = 2 إلكترون فولت.


والفوتون يتحرك باستمرار بسرعة الضوء ولا يوجد في حالة سكون، لذلك فله كمية حركة <math>p</math> وهي تعطى بالعلاقة التالية الناتجة عن [[ميكانيكا الكم]] :
والفوتون يتحرك باستمرار بسرعة الضوء ولا يوجد في حالة سكون، لذلك فله كمية حركة <math>p</math> وهي تعطى بالعلاقة التالية الناتجة عن [[ميكانيكا الكم]] :


:<math>p=\frac{h \nu}{c}=\frac{h}{\lambda}\,.</math>
:<math>p=\frac{h \nu}{c}=\frac{h}{\lambda}\,.</math>
سطر 184: سطر 184:
== كيف ينشأ الفوتون ==
== كيف ينشأ الفوتون ==


[[ملف:Bohr-atom-PAR.svg|thumb|300px|ينشأ الفوتون الضوئي في الذرة عندما يقفز أحد إلكترونات الذرة من مستوي طاقة علوي إلى مستوي طاقة سفلي، عندئذ يطلق الإلكترون فارق الطاقة على هيئة فوتونا له تردد محدد.]]
[[ملف:Bohr-atom-PAR.svg|تصغير|300px|ينشأ الفوتون الضوئي في الذرة عندما يقفز أحد إلكترونات الذرة من مستوي طاقة علوي إلى مستوي طاقة سفلي، عندئذ يطلق الإلكترون فارق الطاقة على هيئة فوتونا له تردد محدد.]]


ينشأ الفوتون الضوئي في الغلاف [[ذرة|الذري]] الإلكتروني عندما تتأثر الذرة بفعل [[الحرارة]] مثلا ويصبح أحد الإلكترونات في مستوي طاقة للذرة عال، ولا يستطيع الإلكترون البقاء في ذلك المستوي فسرعان ما يقفز إلى مستوي طاقة سفلي ويطلق فارق الطاقة في هيئة فوتون (شعاع ضوء) له تردد محدد أو ذي طول موجة محددة.
ينشأ الفوتون الضوئي في الغلاف [[ذرة|الذري]] الإلكتروني عندما تتأثر الذرة بفعل [[الحرارة]] مثلا ويصبح أحد الإلكترونات في مستوي طاقة للذرة عال، ولا يستطيع الإلكترون البقاء في ذلك المستوي فسرعان ما يقفز إلى مستوي طاقة سفلي ويطلق فارق الطاقة في هيئة فوتون (شعاع ضوء) له تردد محدد أو ذي طول موجة محددة.


فذرة [[الصوديوم]] على سبيل المثال تطلق عند الإثارة شعاعي ضوء تبلغ طول موجتهما 589 [[نانومتر]] و 590 نانومتر. ويقع هذان الشعاعان في منطقة اللون [[الأصفر]] [[طيف|للطيف]]، هذان الشعاعان هما فوتونان.
فذرة [[الصوديوم]] على سبيل المثال تطلق عند الإثارة شعاعي ضوء تبلغ طول موجتهما 589 [[نانومتر]] و 590 نانومتر. ويقع هذان الشعاعان في منطقة اللون [[الأصفر]] [[طيف|للطيف]]، هذان الشعاعان هما فوتونان.


وطيف [[الزئبق]] يصدر خطين من الفوتونات طول موجتيهما 579 و 577 نانومتر يقعان في منطقة الضوء الأصفر وخط ثالث ذو طول موجة 546 نانومتر وهذا يقع في منطقة الضوء [[الأخضر]].
وطيف [[الزئبق]] يصدر خطين من الفوتونات طول موجتيهما 579 و 577 نانومتر يقعان في منطقة الضوء الأصفر وخط ثالث ذو طول موجة 546 نانومتر وهذا يقع في منطقة الضوء [[الأخضر]].
سطر 194: سطر 194:
وكل من هذه الفوتونات ينشأ عندما يقفز أحد الإلكترونات من مستوى للطاقة عال إلى مستوي منخفض. وتصل طاقة هذه الفوتونات بين 0.5 و 0.6 إلكترون فولت (أي أقل من 1 إلكترون فولت).
وكل من هذه الفوتونات ينشأ عندما يقفز أحد الإلكترونات من مستوى للطاقة عال إلى مستوي منخفض. وتصل طاقة هذه الفوتونات بين 0.5 و 0.6 إلكترون فولت (أي أقل من 1 إلكترون فولت).


وبصفة عامة فالفوتونات عبارة عن [[أشعة كهرومغناطيسية]]، بعضها يمكن رؤيته وينتمي إلى أشعة [[ضوء مرئي|الضوء المرئي]]، والبعض الآخر يمكن أن يظهر في هيئة شعاع من [[أشعة سينية|الأشعة السينية]] ذات الطاقة العالية وبالتالي فلها درجة نفاذ عالية. وتنشأ الأشعة السينية عندما يقفز إلكترون من مستوى عال في الذرة إلى مكان شاغر في الذرة بالقرب من النواة. فيكون فرق طاقتي المستويين بالغا ويصل إلى عدة مئات إلكترون فولت.
وبصفة عامة فالفوتونات عبارة عن [[أشعة كهرومغناطيسية]]، بعضها يمكن رؤيته وينتمي إلى أشعة [[ضوء مرئي|الضوء المرئي]]، والبعض الآخر يمكن أن يظهر في هيئة شعاع من [[أشعة سينية|الأشعة السينية]] ذات الطاقة العالية وبالتالي فلها درجة نفاذ عالية. وتنشأ الأشعة السينية عندما يقفز إلكترون من مستوى عال في الذرة إلى مكان شاغر في الذرة بالقرب من النواة. فيكون فرق طاقتي المستويين بالغا ويصل إلى عدة مئات إلكترون فولت.


وهناك نوع من الفوتونات ذو طاقة عالية جدا تبلغ عدة ملايين إلكترون فولت مثل [[أشعة غاما]]. هذه الفوتونات لا تنشأ في الغلاف الذري للعناصر، وإنما تصدر من نواة الذرة.
وهناك نوع من الفوتونات ذو طاقة عالية جدا تبلغ عدة ملايين إلكترون فولت مثل [[أشعة غاما]]. هذه الفوتونات لا تنشأ في الغلاف الذري للعناصر، وإنما تصدر من نواة الذرة.


== التسمية ==
== التسمية ==


في عام [[1900]]م كان [[ماكس بلانك]] يعمل على مسألة إشعاع [[الجسم الأسود]]، وتوصل إلى أن الطاقة في الأمواج الكهرومغناطيسية لا يُمكن أن تنتشر إلا على شكل "حزم صغيرة" من الطاقة، أطلق عليها "الكموم" (جمع كم). لاحقا وفي عام [[1905]]م ذهب [[ألبرت آينشتاين]] إلى أبعد من ذلك حين قال أن الأمواج الكهرومغناطيسية لا يُمكن أن توجد إلا على شكل حزم طاقة<ref name="Einstein1905">
في عام [[1900]]م كان [[ماكس بلانك]] يعمل على مسألة إشعاع [[الجسم الأسود]]، وتوصل إلى أن الطاقة في الأمواج الكهرومغناطيسية لا يُمكن أن تنتشر إلا على شكل "حزم صغيرة" من الطاقة، أطلق عليها "الكموم" (جمع كم). لاحقا وفي عام [[1905]]م ذهب [[ألبرت آينشتاين]] إلى أبعد من ذلك حين قال أن الأمواج الكهرومغناطيسية لا يُمكن أن توجد إلا على شكل حزم طاقة<ref name="Einstein1905">
{{cite journal
{{cite journal
| الأخير = Einstein | الأول = A.
| الأخير = Einstein | الأول = A.
سطر 209: سطر 209:
| volume = 17 | الصفحات = 132–148
| volume = 17 | الصفحات = 132–148
| doi = 10.1002/andp.19053220607
| doi = 10.1002/andp.19053220607
}} {{de icon}}. A partial [[s:A Heuristic Model of the Creation and Transformation of Light|English translation]] is available from [[ويكي مصدر]].</ref>. وقد أطلق عليها اسماً مشابهاً وهو "كموم الضوء". أما كلمة "فوتون" فقد اشتقت من الكلمة الإغريقية "φως" (فوس) والتي تعني "ضوء". وقد كان من ابتكر الكلمة هو الفيزيائي [[غلبرت لويس]] في عام [[1926]]، والذي نشر نظرية تخمينية – غير تجريبية – حول أن "الفوتونات [[قانون بقاء الطاقة|لا تستحدث ولا تفنى]]"<ref name="Lewis1926">
}} {{de icon}}. A partial [[s:A Heuristic Model of the Creation and Transformation of Light|English translation]] is available from [[ويكي مصدر]].</ref>. وقد أطلق عليها اسماً مشابهاً وهو "كموم الضوء". أما كلمة "فوتون" فقد اشتقت من الكلمة الإغريقية "φως" (فوس) والتي تعني "ضوء". وقد كان من ابتكر الكلمة هو الفيزيائي [[غلبرت لويس]] في عام [[1926]]، والذي نشر نظرية تخمينية – غير تجريبية – حول أن "الفوتونات [[قانون بقاء الطاقة|لا تستحدث ولا تفنى]]"<ref name="Lewis1926">
{{cite journal
{{cite journal
| الأخير=Lewis | الأول = G.N. | وصلة المؤلف = Gilbert N. Lewis
| الأخير=Lewis | الأول = G.N. | وصلة المؤلف = Gilbert N. Lewis
سطر 217: سطر 217:
| volume = 118 | الصفحات = 874–875
| volume = 118 | الصفحات = 874–875
| doi = 10.1038/118874a0
| doi = 10.1038/118874a0
}}</ref>. وبالرغم من أن نظرية لويس لم تلاق قبولاً لتعارضها مع العديد من التجارب العلمية، إلى أن معظم الفيزيائيين استخدموا "فوتونه" الجديد مباشرة بعد طرح النظرية. حسب [[إسحاق أسيموف]]، [[آرثر كومبتون]] هو من عرّف "كموم الطاقة" بأنها "فوتونات" في عام [[1923]].<ref>
}}</ref>. وبالرغم من أن نظرية لويس لم تلاق قبولاً لتعارضها مع العديد من التجارب العلمية، إلى أن معظم الفيزيائيين استخدموا "فوتونه" الجديد مباشرة بعد طرح النظرية. حسب [[إسحاق أسيموف]]، [[آرثر كومبتون]] هو من عرّف "كموم الطاقة" بأنها "فوتونات" في عام [[1923]].<ref>
{{مرجع كتاب
{{مرجع كتاب
| العنوان = The Neutrino, Ghost Particle of the Atom
| العنوان = The Neutrino, Ghost Particle of the Atom
سطر 237: سطر 237:
}}</ref>.
}}</ref>.


وعادة ما يُشار في الفيزياء إلى الفوتون برمز "γ" (الحرف الإغريقي "غاما"). وربما استخدم هذا الرمز تيمّناً [[أشعة غاما|بأشعة غاما]] (والتي اكتشفها وأسماها الفيزيائي "باول فيلارد" في عام [[1900]]<ref>
وعادة ما يُشار في الفيزياء إلى الفوتون برمز "γ" (الحرف الإغريقي "غاما"). وربما استخدم هذا الرمز تيمّناً [[أشعة غاما|بأشعة غاما]] (والتي اكتشفها وأسماها الفيزيائي "باول فيلارد" في عام [[1990]]<ref>
{{cite journal
{{cite journal
| الأخير = Villard | الأول = P. | وصلة المؤلف = Paul Ulrich Villard
| الأخير = Villard | الأول = P. | وصلة المؤلف = Paul Ulrich Villard
سطر 258: سطر 258:
| journal = [[Philosophical Magazine]]
| journal = [[Philosophical Magazine]]
| volume = 27 |الصفحات = 854–868
| volume = 27 |الصفحات = 854–868
}}</ref>. في [[الكيمياء]] و[[الهندسة البصرية]] يُرمز للفوتونات عادة بالرمز "hν"، حيث أن "h" هو ثابت بلانك و"ν" هو حرف إغريقي يدل على تردد الموجات. ويوجد رمز أقل شيوعاً هو "hf" حيث "f" اختصار للكلمة الإنجليزية "frequency" والتي تعني تردد.
}}</ref>. في [[الكيمياء]] و[[الهندسة البصرية]] يُرمز للفوتونات عادة بالرمز "hν"، حيث أن "h" هو ثابت بلانك و"ν" هو حرف إغريقي يدل على تردد الموجات. ويوجد رمز أقل شيوعاً هو "hf" حيث "f" اختصار للكلمة الإنجليزية "frequency" والتي تعني تردد.


== الخصائص الفيزيائية ==
== الخصائص الفيزيائية ==
سطر 279: سطر 279:
| السنة=1993
| السنة=1993
| الرقم المعياري=0-85274-328-9
| الرقم المعياري=0-85274-328-9
}}</ref>، ونظريا كل [[الأعداد الكمية]] الأخرى للفوتون (مثل [[عدد الباريون]] و[[نكهة (فيزياء الجسيمات)|الأعداد الكمية للنكهة]]) هي صفر<ref>See p.31 in
}}</ref>، ونظريا كل [[الأعداد الكمية]] الأخرى للفوتون (مثل [[عدد الباريون]] و[[نكهة (فيزياء الجسيمات)|الأعداد الكمية للنكهة]]) هي صفر<ref>See p.31 in
{{Cite journal
{{Cite journal
|الأخير=Amsler |الأول=C.
|الأخير=Amsler |الأول=C.
سطر 289: سطر 289:
}}.</ref>.
}}.</ref>.


العلاقة بين [[طاقة]] و[[زخم حركة]] الفوتون هي "E = pc"، حيث أن "E" هي الطاقة و"p" هي مقدار [[متجه]] زخم الحركة و"c" هي سرعة الضوء<ref>See section 1.6 in {{مرجع كتاب
العلاقة بين [[طاقة]] و[[زخم حركة]] الفوتون هي "E = pc"، حيث أن "E" هي الطاقة و"p" هي مقدار [[متجه]] زخم الحركة و"c" هي سرعة الضوء<ref>See section 1.6 in {{مرجع كتاب
| الأخير = Alonso | الأول=M.
| الأخير = Alonso | الأول=M.
| الأخير2 = Finn | الأول2=E.J.
| الأخير2 = Finn | الأول2=E.J.
سطر 306: سطر 306:
=== الكتلة ===
=== الكتلة ===


يُعتقد حالياً أن الفوتون عديم [[الكتلة السكونية]] <ref group="ملاحظات">أثبتت نظرية [[النسبية الخاصة]] لآينشتاين أن كتلة الأجسام يُمكن أن تزيد في حال تحركت بسرعة قريبة من سرعة الضوء. وعند 86% من [[سرعة الضوء]] تتضاعف الكتلة. ولذلك فقد وُلد مصطلحان للتعبير عن الكتلة هما: [[الكتلة السكونية]]، وهي كتلة الأجسام عندما تكون ثابتة. و[[الكتلة الحركية]]، وهي كتلة الأجسام عندما تتحرك بما يقارب سرعة الضوء.</ref> تماما (كتلته السكونية ليست قليلة جدا بل هي لا شيء).
يُعتقد حالياً أن الفوتون عديم [[الكتلة السكونية]] <ref group="ملاحظات">أثبتت نظرية [[النسبية الخاصة]] لآينشتاين أن كتلة الأجسام يُمكن أن تزيد في حال تحركت بسرعة قريبة من سرعة الضوء. وعند 86% من [[سرعة الضوء]] تتضاعف الكتلة. ولذلك فقد وُلد مصطلحان للتعبير عن الكتلة هما: [[الكتلة السكونية]]، وهي كتلة الأجسام عندما تكون ثابتة. و[[الكتلة الحركية]]، وهي كتلة الأجسام عندما تتحرك بما يقارب سرعة الضوء.</ref> تماما (كتلته السكونية ليست قليلة جدا بل هي لا شيء). لكن المشكلة هي أنه إذا كان الفوتون عديم الكتلة فلا يُمكن أن يتحرك بسرعة "c" في الفراغ، بل يجب أن تكون سرعته أقل وأن تعتمد على تردده. لكن في الواقع التعبير الشائع عن "c" بأنها سرعة تحرك الضوء هو خطأ، بل هي ثابت طبيعي يُمثل الحد الأقصى للسرعة التي يُمكن لأي جسم التحرك بها نظريا في [[الزمكان]]<ref>{{cite journal|المؤلف= David Mermin|العنوان=Relativity without light|journal=American Journal of Physics| التاريخ= February 1984| volume= 52(2)|الصفحات=119–124}}</ref>. وهكذا فهي ما زالت سرعة الأمواج في الزمكان (أمواج الجاذبية والجاذبية)، لكنها ليست سرعة الفوتونات.
وإن كان الفوتون يملك كتلة سكونية حتى ولو كانت صغيرة جدا فلا يُمكن أن يتحرك بسرعة "c" في الفراغ، بل يجب أن تكون سرعته أقل وأن تعتمد على تردده. لكن في الواقع التعبير الشائع عن "c" بأنها سرعة تحرك الضوء هو خطأ إلا إن كان المقصود بها سرعة الضوء في الفراغ فسيصح مساواة قيمتها مع الثابت الطبيعي c، فهي ثابت طبيعي يُمثل الحد الأقصى للسرعة التي يُمكن لأي شئ التحرك بها نظريا في [[الزمكان]]<ref>{{cite journal|المؤلف= David Mermin|العنوان=Relativity without light|journal=American Journal of Physics| التاريخ= February 1984| volume= 52(2)|الصفحات=119–124}}</ref>. وهكذا فهي ما زالت سرعة الأمواج في الزمكان
( الجاذبية او امواج الجاذبية " امواج الثقالة ) لكنها ليست سرعة الفوتونات دائما.


== الاعتراضات الأولية ==
== الاعتراضات الأولية ==
تم التحقق من تنبؤات [[ألبرت أينشتاين|أينشتاين]] عام 1905 تجريبياً بطرق عدة خلال العقدين الأولين من [[قرن 20|القرن العشرين]]. قبل [[تأثير كومبتون|تجربة كومبتون (تأثير كومبتون)]] التي أثبتت أن الفوتونات حملت [[زخم حركة]] متناسب مع [[رقم الموجة]] ([[التردد]]) كان معظم الفيزيائيين مترددين في الاعتقاد بأن [[إشعاع كهرومغناطيسي|الإشعاع الكهرومغناطيسي]] قد يكون جسيمي، بدلاً من ذلك كان هناك اعتقاد منتشر بأن تكميم الطاقة ينتج عن بعض القيود الغير معروفة [[المادة|للمادة]] الماصة والباعثة للإشعاع. تغيرت الآراء بمرور الوقت ويعود التغير بشكل جزئي إلى تجارب مثل [[تأثير كومبتون]]، حيث كان من الصعوبة بشدة ألا يعزى التكميم إلى [[الضوء]] نفسه لتفسير النتائج الملاحظة.
تم التحقق من تنبؤات [[ألبرت أينشتاين|أينشتاين]] عام 1905 تجريبياً بطرق عدة خلال العقدين الأولين من [[قرن 20|القرن العشرين]]. قبل [[تأثير كومبتون|تجربة كومبتون (تأثير كومبتون)]] التي أثبتت أن الفوتونات حملت [[زخم حركة]] متناسب مع [[رقم الموجة]] ([[التردد]]) كان معظم الفيزيائيين مترددين في الاعتقاد بأن [[إشعاع كهرومغناطيسي|الإشعاع الكهرومغناطيسي]] قد يكون جسيمي، بدلاً من ذلك كان هناك اعتقاد منتشر بأن تكميم الطاقة ينتج عن بعض القيود الغير معروفة [[المادة|للمادة]] الماصة والباعثة للإشعاع. تغيرت الآراء بمرور الوقت ويعود التغير بشكل جزئي إلى تجارب مثل [[تأثير كومبتون]]، حيث كان من الصعوبة بشدة ألا يعزى التكميم إلى [[الضوء]] نفسه لتفسير النتائج الملاحظة.


حتى بعد [[تأثير كومبتون]]، قام كل من [[نيلس بور]] و[[هندريك أنتوني كرامرز]]، و[[جون كلارك سلاتر]] بمحاولة أخيرة للحفاظ على [[معادلات ماكسويل|نموذج ماكسويل للحقل الكهرومغناطيسي المستمر للضوء]] والتي أطلق عليها اسم [[نظرية بكس]]<sup>[[w:BKS theory|<nowiki>[</nowiki>en<nowiki>]</nowiki>]]</sup>. لإدخال البيانات التي كانت متوفرة وقتها في الحساب،كان لابد من وضع فرضيتين جذريتين:
حتى بعد [[تأثير كومبتون]]، قام كل من [[نيلس بور]] و[[هندريك أنتوني كرامرز]]، و[[جون كلارك سلاتر]] بمحاولة أخيرة للحفاظ على [[معادلات ماكسويل|نموذج ماكسويل للحقل الكهرومغناطيسي المستمر للضوء]] والتي أطلق عليها اسم [[نظرية بكس]]<sup>[[w:BKS theory|<nowiki>[</nowiki>en<nowiki>]</nowiki>]]</sup>. لإدخال البيانات التي كانت متوفرة وقتها في الحساب، كان لابد من وضع فرضيتين جذريتين:


# يتم الحفاظ على [[الطاقة]] و[[زخم الحركة]] فقط في المرحلة الوسطى للتفاعل بين [[المادة]] و[[الإشعاع]] وليس في العمليات الابتدائية كالامتصاص والانبعاث. هذا يسمح بالتوفيق بين الطاقة المتغيرة المتقطعة للنواة (القفز بين مستويات الطاقة) والتحرير المستمر للطاقة على هيئة اشعاع.
# يتم الحفاظ على [[الطاقة]] و[[زخم الحركة]] فقط في المرحلة الوسطى للتفاعل بين [[المادة]] و[[الإشعاع]] وليس في العمليات الابتدائية كالامتصاص والانبعاث. هذا يسمح بالتوفيق بين الطاقة المتغيرة المتقطعة للنواة (القفز بين مستويات الطاقة) والتحرير المستمر للطاقة على هيئة اشعاع.
#التخلي عن السببية: مثال، [[إشعاع تلقائي|الإشعاعات التلقائية]] هي فقط اشعاعات ناجمة عن [[مجال مغناطيسي]] "افتراضي".
#التخلي عن السببية: مثال، [[إشعاع تلقائي|الإشعاعات التلقائية]] هي فقط اشعاعات ناجمة عن [[مجال مغناطيسي]] "افتراضي".


ومع ذلك، أظهرت [[تأثير كومبتون|تجارب كومبتون المدققة]] بأن حفظ الطاقة وزخم الحركة يتم بشكل جيد جداً في العمليات الابتدائية، وأن اهتزاز [[الالكترون]] وتوليد فوتون جديد في [[تأثير كومبتون]] يخضع للسبيبة خلال 10 [[بيكو ثانية]]. وفقا لذلك أعطى [[نيلز بور|بور]] وزملاؤه نهاية مشرفة لنموذجهم قدر المستطاع. ومع ذلك ألهم فشل نموذج [[نظرية بكس]] [[فيرنر هايزنبيرغ]] في تطويره ل[[ميكانيكا المصفوفات]].
ومع ذلك، أظهرت [[تأثير كومبتون|تجارب كومبتون المدققة]] بأن حفظ الطاقة وزخم الحركة يتم بشكل جيد جداً في العمليات الابتدائية، وأن اهتزاز [[الالكترون]] وتوليد فوتون جديد في [[تأثير كومبتون]] يخضع للسبيبة خلال 10 [[بيكو ثانية]]. وفقا لذلك أعطى [[نيلز بور|بور]] وزملاؤه نهاية مشرفة لنموذجهم قدر المستطاع. ومع ذلك ألهم فشل نموذج [[نظرية بكس]] [[فيرنر هايزنبيرغ]] في تطويره ل[[ميكانيكا المصفوفات]].


استمر القليل من الفيزيائيين في تطوير النماذج النصف تقليدية والتي تصف [[الإشعاع الكهرومغناطيسي]] بأنه غير مكمم وتخضع فيها [[المادة]] لقوانين [[ميكانيكا الكم]]. بالرغم من أن الأدلة على وجود الفوتونات من التجارب الفيزيائية والكيميائية كانت ساحقة، فإنها لن تؤخذ نتيجة مطلقة، نظراً لاعتمادها على [[تأثير كومبتون|التفاعل بين الضوء والمادة]]. ومع ذاك دحضت تماما كل النظريات النصف تقليدية المعقدة [[مادة|للمادة]] في السبعينيات والثمانينيات من القرن العشرين بالتجارب المرتبطة بالفوتون. ومنذ ذلك الحين تم الأخذ بعين الاعتبار نظرية [[ألبرت أينشتاين|أينشتاين]] بأن التكميم خاصية [[ضوء|للضوء]] نفسه ليتم إثباتها.
استمر القليل من الفيزيائيين في تطوير النماذج النصف تقليدية والتي تصف [[الإشعاع الكهرومغناطيسي]] بأنه غير مكمم وتخضع فيها [[المادة]] لقوانين [[ميكانيكا الكم]]. بالرغم من أن الأدلة على وجود الفوتونات من التجارب الفيزيائية والكيميائية كانت ساحقة، فإنها لن تؤخذ نتيجة مطلقة، نظراً لاعتمادها على [[تأثير كومبتون|التفاعل بين الضوء والمادة]]. ومع ذاك دحضت تماما كل النظريات النصف تقليدية المعقدة [[مادة|للمادة]] في السبعينيات والثمانينيات من القرن العشرين بالتجارب المرتبطة بالفوتون. ومنذ ذلك الحين تم الأخذ بعين الاعتبار نظرية [[ألبرت أينشتاين|أينشتاين]] بأن التكميم خاصية [[ضوء|للضوء]] نفسه ليتم إثباتها.


== انظر أيضاً ==
== انظر أيضاً ==
سطر 372: سطر 370:
{{جسيمات}}
{{جسيمات}}
{{كهروديناميكا كمية}}
{{كهروديناميكا كمية}}

{{معرفات مركب كيميائي}}
{{شريط بوابات|فيزياء}}
{{شريط بوابات|فيزياء}}
{{ضبط استنادي}}
{{ضبط استنادي}}

نسخة 06:31، 19 فبراير 2018

فوتون

فوتونات منبعثة في حزمة ليزر مترابطة.

التكوين جسيم أولي
العائلة بوزون
المجموعة بوزون قياسي
التفاعل كهرومغناطيسية
واضع النظرية ألبرت أينشتاين
المكتشف ماكس بلانك
الرمز γ, hν, or ħω
الكتلة 0
<1×10−18 [[eV/c2]][1]
متوسط العمر مستقر[2]
الشحنة الكهربائية 0
<1×10−35 e[1]
الدوران 1
C parity -1[1]
Condensed لف نظيري ‏(Jتكافؤ (فيزياء)C) = 0,1(1--)[1]

الفوتون أو ضويء[3] (بالإنجليزية: Photon)‏ في الفيزياء، هو جسيم أولي، والكم للضوء وجميع الأشكال الأخرى للإشعاع الكهرومغناطيسي، والحامل للقوة الكهرومغناطيسية. تسهل ملاحظة تأثيرات هذة القوة في كلا المستويين الميكروسكوبي والماكروسكوبي، بسبب انعدام الكتلة الساكنة للفوتون الذي يسمح بالتآثر والتفاعل في المسافات الطويلة. كما هو حال كل الجسيمات الأولية، تقدم ميكانيكا الكم حالياً أفضل تفسير للفوتونات، وللفوتونات خاصية ازدواجية الموجة والجسيم، مظهرة خصائص كلا من الموجات والجسيمات حيث يمكن للفوتون الواحد الانكسار بواسطة العدسات والتداخل، ومن الممكن تصرفه كجسيم معطياً نتيجة محددة عند قياس وتحديد موضعه، ويختص بكونه معدوم كتلة السكون، ومعدوم الشحنة الكهربائية، بالإضافة لكونه يتنقل في الفراغ بسرعة الضوء.

طور ألبرت أينشتاين تدريجياً المفهوم الحديث للفوتون لتفسير الملاحظات التجريبية غير المطابقة لنموذج موجة الضوء التقليدي، حيث علل نموذج الفوتون على وجه الخصوص اعتماد طاقة الضوء على تردده، وفسر قابلية المادة والإشعاع ليكونا في حالة توازن حراري. كما علل النموذج الحديث للفوتون الملاحظات الشاذة لخصائص إشعاع الجسم الأسود، التي سعى العديد من الفيزيائيين وعلى الأخص ماكس بلانك، إلى تفسيرها باستخدام نماذج شبه تقليدية، تصف الضوء بمعادلات ماكسويل وتكمم الأجسام المادية المشعة والماصة للضوء. بالرغم من مساهمة هذه النماذج الشبه تقليدية في تطوير ميكانيكا الكم، فإن التجارب اللاحقة تحققت من صحة فرضية أينشتاين بأن الضوء هو نفسه مكمم وأن الفوتونات هي كم الضوء.

في النموذج العياري لفيزياء الجسيمات، وصفت الفوتونات كنتيجة ضرورية للتماثل التام لقوانين الفيزياء في كل نقطة من الزمكان. خصائص التناظر القياسي هذا تحدد الخصائص الجوهرية للفوتونات كالشحنة والكتلة واللف المغزلي. وقد أدى نموذج الفوتون إلى تقدم هائل في مجال الفيزياء النظرية والتجريبية، كالليزر، وتكاثف بوز وأينشتاين، ونظرية الحقل الكمومي، ومطال الاحتمال لميكانيكا الكم، وقد تم تطبيقه على الكيمياء الضوئية، والمجاهر عالية الوضوح، وقياسات المسافات الجزيئية. حديثاً تم دراسة الفوتونات بوصفها عناصر من أجهزة الحاسوب الكمومي والتطبيقات المتطورة في الاتصالات البصرية مثل التشفير الكمومي.

يختزن الفوتون كمًا محددًا من الطاقة حسب المعادلة:

،

حيث هو ثابت بلانك، و سرعة الضوء، و طول الموجة.

تطور تاريخي

أظهرت تجربة الشق المضاعف لتوماس ينغ في 1805 أن الضوء يمكن أن يتصرف مثل الموجة، مساندة بذلك في هزيمة نظريات الجسيم المبكرة للضوء.

كانت أغلب النظريات حتى القرن الثامن عشر تصف الضوء على أنه ناشئ عن جسيمات. أحد هذه النظريات المبكرة كانت قد وصفت في كتاب البصريات (1021) لابن الهيثم، الذي اعتبر أن أشعة الضوء عبارة عن تيارات من جسيمات صغيرة جداً والتي تفتقر لكل المؤهلات الحسية عدا الطاقة.[4] كان هذا رأي إسحاق نيوتن أيضا في طبيعة الضوء. لما كانت نماذج الجسيم غير قادرة على تفسير الانكسار والحيود والانكسار المزدوج للضوء، فقد اقتراح نظريات الموجة للضوء رينيه ديكارت (1637)، [5] روبرت هوك (1665)، [6] وكريستيان هايغنز (1678);[7]، بالرغم من ذلك، ظلت نماذج الجسيم هي الغالبة، بشكل رئيسي لتأثير إسحاق نيوتن.[8] في أوائل القرن التاسع عشر، شرح كل من توماس يونغ وفرسنل أوغست بوضوح عملية تداخل وانكسار الضوء ومع العام 1850 تم قبول نماذج الموجة عموما.[9] في 1865، تنبؤات جيمس كلرك ماكسويل[10] بأن الضوء عبارة عن موجة كهرمغناطيسية والذي تأكد تقريبا في 1888 بواسطة تحسس موجات الراديو من قبل هنريك هيرتز'[11]—بدا أنها آخر صيحة لنماذج الضوء الجسيمية.

في 1900، ماكسويل النموذج النظري للضوء على أنه تذبذب مجالين كهربائي ومغناطيسي بدت مكتملة. مع ذلك، العديد من الملاحظات لم يكن ممكنا تفسيرها بأي نموذج موجي من الإشعاع الكهرومغنطيسي، وهذا أدى للفكرة القائلة بأن طاقة الضوء كانت قد رزمت في كمّات الموصوف بالعلاقة E=hν. بينت تجارب لاحقة أن كمات الضوء هذه تحمل أيضا كمية تحرك وعليه، يمكن اعتبارها جسيمات: ولد مفهوم الفوتون، مؤديا إلى تفهم عميق للمجالات الكهربائية والمغنطيسية نفسها.

إن نظرية الموجة لماكسويل، مع ذلك، لا تحسب حسابا لجميع خصائص الضوء. تتنبأ نظرية ماكسويل بأن طاقة موجة الضوء تعتمد فقط على شدتها، ليس على ترددها، على الرغم من أن أنواع عديدة من التجارب المستقلة تظهر أن الطاقة الممنوحة بالضوء للذرات تعتمد على تردد الضوء فقط وليس شدته. على سبيل المثال، بعض التفاعلات الكيميائية يتم إثارتها فقط عن طريق ضوء بتردد أعلى من حد معين. إذا كان هذا الضوء ذا تردد أقل فمهما بلغت شدته لا يحفز التفاعل. بالمثل، بالإمكان نزع الكترونات من صفيحة معدنية بتسليط ضوء ذي تردد عالي بقدر كاف عليها (تأثير كهروضوئي)؛ تتعلق طاقة الالكترونات المنتزعة بتردد الضوء فقط، وليس الشدة.[12].[ملاحظات 1]

اكتشاف الفوتون

يمكن تلخيص أبرز الاحداث التاريخية في اكتشاف الفوتون كما يلي:

الفوتون في الفراغ

يتحرك الفوتون في الفراغ بسرعة الضوء 299792458 متر/ثانية وسرعته ثابته لا تتغير إلا إذا دخل وسطا آخر مثل الزجاج.

وبصفته كمية طاقة تعتمد طاقته على ثابت بلانك وتعطى بالعلاقة :

حيث:

تردد موجة الفوتون

ونعطي هنا مثالا عدديا لفوتون معهود من الفوتونات الضوئية:

 ,  

حيث:

طاقة الفوتون بالإلكترون فولت eV

 : التردد الزاوي (1/ثانية).

فإذا كان التردد الزاوي : (في الثانية) ω = 1,520 · 1015

تكون طاقة الفوتون : E = 1 eV

وهذه طاقة شعاع ضوء في منطقة طيف الأشعة تحت الحمراء.

كما يمكن حساب طاقة الفوتون بمعرفة طول موجته، من المعادلة:

حيث:

λ طول موجة الفوتون بالميكرومتر

فإذا كانت طول موجة الفوتون تساوي= 1,240 ميكرومتر فهي تساوي 1240 نانومتر

وتكون طاقة الفوتون : E = 1 eV

وللمقارنة فإن شعاع ضوء ذو طول موجة 620 نانومتر يكون لونه برتقالي، وبالتالى تكون طاقته = 2 إلكترون فولت.

والفوتون يتحرك باستمرار بسرعة الضوء ولا يوجد في حالة سكون، لذلك فله كمية حركة وهي تعطى بالعلاقة التالية الناتجة عن ميكانيكا الكم :

كيف ينشأ الفوتون

ينشأ الفوتون الضوئي في الذرة عندما يقفز أحد إلكترونات الذرة من مستوي طاقة علوي إلى مستوي طاقة سفلي، عندئذ يطلق الإلكترون فارق الطاقة على هيئة فوتونا له تردد محدد.

ينشأ الفوتون الضوئي في الغلاف الذري الإلكتروني عندما تتأثر الذرة بفعل الحرارة مثلا ويصبح أحد الإلكترونات في مستوي طاقة للذرة عال، ولا يستطيع الإلكترون البقاء في ذلك المستوي فسرعان ما يقفز إلى مستوي طاقة سفلي ويطلق فارق الطاقة في هيئة فوتون (شعاع ضوء) له تردد محدد أو ذي طول موجة محددة.

فذرة الصوديوم على سبيل المثال تطلق عند الإثارة شعاعي ضوء تبلغ طول موجتهما 589 نانومتر و 590 نانومتر. ويقع هذان الشعاعان في منطقة اللون الأصفر للطيف، هذان الشعاعان هما فوتونان.

وطيف الزئبق يصدر خطين من الفوتونات طول موجتيهما 579 و 577 نانومتر يقعان في منطقة الضوء الأصفر وخط ثالث ذو طول موجة 546 نانومتر وهذا يقع في منطقة الضوء الأخضر.

وكل من هذه الفوتونات ينشأ عندما يقفز أحد الإلكترونات من مستوى للطاقة عال إلى مستوي منخفض. وتصل طاقة هذه الفوتونات بين 0.5 و 0.6 إلكترون فولت (أي أقل من 1 إلكترون فولت).

وبصفة عامة فالفوتونات عبارة عن أشعة كهرومغناطيسية، بعضها يمكن رؤيته وينتمي إلى أشعة الضوء المرئي، والبعض الآخر يمكن أن يظهر في هيئة شعاع من الأشعة السينية ذات الطاقة العالية وبالتالي فلها درجة نفاذ عالية. وتنشأ الأشعة السينية عندما يقفز إلكترون من مستوى عال في الذرة إلى مكان شاغر في الذرة بالقرب من النواة. فيكون فرق طاقتي المستويين بالغا ويصل إلى عدة مئات إلكترون فولت.

وهناك نوع من الفوتونات ذو طاقة عالية جدا تبلغ عدة ملايين إلكترون فولت مثل أشعة غاما. هذه الفوتونات لا تنشأ في الغلاف الذري للعناصر، وإنما تصدر من نواة الذرة.

التسمية

في عام 1900م كان ماكس بلانك يعمل على مسألة إشعاع الجسم الأسود، وتوصل إلى أن الطاقة في الأمواج الكهرومغناطيسية لا يُمكن أن تنتشر إلا على شكل "حزم صغيرة" من الطاقة، أطلق عليها "الكموم" (جمع كم). لاحقا وفي عام 1905م ذهب ألبرت آينشتاين إلى أبعد من ذلك حين قال أن الأمواج الكهرومغناطيسية لا يُمكن أن توجد إلا على شكل حزم طاقة[13]. وقد أطلق عليها اسماً مشابهاً وهو "كموم الضوء". أما كلمة "فوتون" فقد اشتقت من الكلمة الإغريقية "φως" (فوس) والتي تعني "ضوء". وقد كان من ابتكر الكلمة هو الفيزيائي غلبرت لويس في عام 1926، والذي نشر نظرية تخمينية – غير تجريبية – حول أن "الفوتونات لا تستحدث ولا تفنى"[14]. وبالرغم من أن نظرية لويس لم تلاق قبولاً لتعارضها مع العديد من التجارب العلمية، إلى أن معظم الفيزيائيين استخدموا "فوتونه" الجديد مباشرة بعد طرح النظرية. حسب إسحاق أسيموف، آرثر كومبتون هو من عرّف "كموم الطاقة" بأنها "فوتونات" في عام 1923.[15][16].

وعادة ما يُشار في الفيزياء إلى الفوتون برمز "γ" (الحرف الإغريقي "غاما"). وربما استخدم هذا الرمز تيمّناً بأشعة غاما (والتي اكتشفها وأسماها الفيزيائي "باول فيلارد" في عام 1990[17][18]) لأنه تبيّن أنها من الأمواج الكهرومغناطيسية في عام 1914[19]. في الكيمياء والهندسة البصرية يُرمز للفوتونات عادة بالرمز "hν"، حيث أن "h" هو ثابت بلانك و"ν" هو حرف إغريقي يدل على تردد الموجات. ويوجد رمز أقل شيوعاً هو "hf" حيث "f" اختصار للكلمة الإنجليزية "frequency" والتي تعني تردد.

الخصائص الفيزيائية

الفوتون عديم الكتلة (انظر أدناه) والشحنة الكهربائية[20] ولا يضمحل في الفضاء الخالي. الفوتون هو البوزون الحامل للقوة الكهرومغناطيسية[21]، ونظريا كل الأعداد الكمية الأخرى للفوتون (مثل عدد الباريون والأعداد الكمية للنكهة) هي صفر[22].

العلاقة بين طاقة وزخم حركة الفوتون هي "E = pc"، حيث أن "E" هي الطاقة و"p" هي مقدار متجه زخم الحركة و"c" هي سرعة الضوء[23]. طاقة وزخم حركة الفوتون يعتمدان فقط إما على تردده (ν) أو بشكل مساو على طوله الموجي (λ):

حيث أن "K" هو "متجه الموجة" و"ω" هو التردد الزاوي و"ħ" هو ثابت بلانك[24].

وأيضا يملك الفوتون دورانا مغزليا لا يعتمد على تردده. ومقدار دورانه هو

الكتلة

يُعتقد حالياً أن الفوتون عديم الكتلة السكونية [ملاحظات 2] تماما (كتلته السكونية ليست قليلة جدا بل هي لا شيء). لكن المشكلة هي أنه إذا كان الفوتون عديم الكتلة فلا يُمكن أن يتحرك بسرعة "c" في الفراغ، بل يجب أن تكون سرعته أقل وأن تعتمد على تردده. لكن في الواقع التعبير الشائع عن "c" بأنها سرعة تحرك الضوء هو خطأ، بل هي ثابت طبيعي يُمثل الحد الأقصى للسرعة التي يُمكن لأي جسم التحرك بها نظريا في الزمكان[25]. وهكذا فهي ما زالت سرعة الأمواج في الزمكان (أمواج الجاذبية والجاذبية)، لكنها ليست سرعة الفوتونات.

الاعتراضات الأولية

تم التحقق من تنبؤات أينشتاين عام 1905 تجريبياً بطرق عدة خلال العقدين الأولين من القرن العشرين. قبل تجربة كومبتون (تأثير كومبتون) التي أثبتت أن الفوتونات حملت زخم حركة متناسب مع رقم الموجة (التردد) كان معظم الفيزيائيين مترددين في الاعتقاد بأن الإشعاع الكهرومغناطيسي قد يكون جسيمي، بدلاً من ذلك كان هناك اعتقاد منتشر بأن تكميم الطاقة ينتج عن بعض القيود الغير معروفة للمادة الماصة والباعثة للإشعاع. تغيرت الآراء بمرور الوقت ويعود التغير بشكل جزئي إلى تجارب مثل تأثير كومبتون، حيث كان من الصعوبة بشدة ألا يعزى التكميم إلى الضوء نفسه لتفسير النتائج الملاحظة.

حتى بعد تأثير كومبتون، قام كل من نيلس بور وهندريك أنتوني كرامرز، وجون كلارك سلاتر بمحاولة أخيرة للحفاظ على نموذج ماكسويل للحقل الكهرومغناطيسي المستمر للضوء والتي أطلق عليها اسم نظرية بكس[en]. لإدخال البيانات التي كانت متوفرة وقتها في الحساب، كان لابد من وضع فرضيتين جذريتين:

  1. يتم الحفاظ على الطاقة وزخم الحركة فقط في المرحلة الوسطى للتفاعل بين المادة والإشعاع وليس في العمليات الابتدائية كالامتصاص والانبعاث. هذا يسمح بالتوفيق بين الطاقة المتغيرة المتقطعة للنواة (القفز بين مستويات الطاقة) والتحرير المستمر للطاقة على هيئة اشعاع.
  2. التخلي عن السببية: مثال، الإشعاعات التلقائية هي فقط اشعاعات ناجمة عن مجال مغناطيسي "افتراضي".

ومع ذلك، أظهرت تجارب كومبتون المدققة بأن حفظ الطاقة وزخم الحركة يتم بشكل جيد جداً في العمليات الابتدائية، وأن اهتزاز الالكترون وتوليد فوتون جديد في تأثير كومبتون يخضع للسبيبة خلال 10 بيكو ثانية. وفقا لذلك أعطى بور وزملاؤه نهاية مشرفة لنموذجهم قدر المستطاع. ومع ذلك ألهم فشل نموذج نظرية بكس فيرنر هايزنبيرغ في تطويره لميكانيكا المصفوفات.

استمر القليل من الفيزيائيين في تطوير النماذج النصف تقليدية والتي تصف الإشعاع الكهرومغناطيسي بأنه غير مكمم وتخضع فيها المادة لقوانين ميكانيكا الكم. بالرغم من أن الأدلة على وجود الفوتونات من التجارب الفيزيائية والكيميائية كانت ساحقة، فإنها لن تؤخذ نتيجة مطلقة، نظراً لاعتمادها على التفاعل بين الضوء والمادة. ومع ذاك دحضت تماما كل النظريات النصف تقليدية المعقدة للمادة في السبعينيات والثمانينيات من القرن العشرين بالتجارب المرتبطة بالفوتون. ومنذ ذلك الحين تم الأخذ بعين الاعتبار نظرية أينشتاين بأن التكميم خاصية للضوء نفسه ليتم إثباتها.

انظر أيضاً

ملاحظات

  1. ^ ينبغي فهم أنها "بغض النظر عن كمية الشدة" تشير إلى كميات شدتها تحت 1013 W/cm2 تقريبا والتي تبدأ عندها نقطة نظرية التشويش بالانهيار. المثير للاهتمام في موضوع الشدة، والذي يكون للضوء المرئي تقريبا فوق 1014 W/cm2، يتنبأ الوصف الكلاسيكي للموجة أن الطاقة المكتسبة بواسطة الإلكترونات، تدعى طاقة بنديرو الدافعة. انظر أيضا [1]. بالمقارنة، فإن ضوء الشمس ليس سوى 0.1 W/cm2.
  2. ^ أثبتت نظرية النسبية الخاصة لآينشتاين أن كتلة الأجسام يُمكن أن تزيد في حال تحركت بسرعة قريبة من سرعة الضوء. وعند 86% من سرعة الضوء تتضاعف الكتلة. ولذلك فقد وُلد مصطلحان للتعبير عن الكتلة هما: الكتلة السكونية، وهي كتلة الأجسام عندما تكون ثابتة. والكتلة الحركية، وهي كتلة الأجسام عندما تتحرك بما يقارب سرعة الضوء.

المراجع

  1. ^ أ ب ت ث Amsler, C. et al. (Particle Data Group) (2008 +2009 partial update). "Review of Particle Physics: Gauge and Higgs bosons" (PDF). Physics Letters B. ج. 667: 1. Bibcode:2008PhLB..667....1P. DOI:10.1016/j.physletb.2008.07.018. {{استشهاد بدورية محكمة}}: تحقق من التاريخ في: |السنة= (مساعدة)
  2. ^ Official particle table for gauge and Higgs bosons Retrieved 24 October 2006
  3. ^ Larousse Arabe Dictionnaire ISBN 978 2 03 586221 1 صفحة 385
  4. ^ Rashed، R. (2007). "The Celestial Kinematics of Ibn al-Haytham". Arabic Sciences and Philosophy. Cambridge University Press. ج. 17 ع. 1: 7–55 [19]. DOI:10.1017/S0957423907000355. في كتابه البصريات أصغر أجزاء من الضوء، كما يسميها، تحتفظ فقط بخصائص يمكن التعامل معها بالهندسة التحليلية والتحقق منها تجريبياً.
  5. ^ Descartes، R. (1637). Discours de la méthode (مقال عن المنهج). Imprimerie de Ian Maire. (بالفرنسية)
  6. ^ Hooke، R. (1667). Micrographia: or some physiological descriptions of minute bodies made by magnifying [[نظارة]] with observations and inquiries thereupon... London (UK): الجمعية الملكية. {{استشهاد بكتاب}}: تعارض مسار مع وصلة (مساعدة)
  7. ^ Huygens، C. (1678). Traité de la lumière. (بالفرنسية). An ترجمة إنكليزية متوافرة من مشروع غوتنبرغ
  8. ^ Newton، I. (1952) [1730]. Opticks (ط. 4th). Dover (NY): Dover Publications. Book II, Part III, Propositions XII–XX, Queries 25–29. {{استشهاد بكتاب}}: الوسيط غير المعروف |nopp= تم تجاهله يقترح استخدام |no-pp= (مساعدة)
  9. ^ Buchwald، J.Z. (1989). The Rise of the Wave Theory of Light: Optical Theory and Experiment in the Early Nineteenth Century. University of Chicago Press. OCLC:18069573.
  10. ^ Maxwell، J.C. (1865). "A Dynamical Theory of the Electromagnetic Field". المعاملات الفلسفية للجمعية الملكية. ج. 155: 459–512. DOI:10.1098/rstl.1865.0008. تلى هذا المقال عرضاً تقديميا من ماكسويل في 8 ديسمبر 1864 للجمعية الملكية.
  11. ^ Hertz، H. (1888). "Über Strahlen elektrischer Kraft". Sitzungsberichte der Preussischen Akademie der Wissenschaften (Berlin). ج. 1888: 1297–1307. (بالألمانية)
  12. ^ اعتماد التردد الإضاءة ص. 276f., التأثير الكهروضوئي قسم 1.4 في Alonso، M.؛ Finn، E.J. (1968). Fundamental University Physics Volume III: Quantum and Statistical Physics. أديسون-ويسلي [الإنجليزية].
  13. ^ Einstein، A. (1905). "Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt". Annalen der Physik. ج. 17: 132–148. DOI:10.1002/andp.19053220607. (بالألمانية) . A partial English translation is available from ويكي مصدر.
  14. ^ Lewis، G.N. (1926). "The conservation of photons". [[نيتشر (مجلة)|]]. ج. 118: 874–875. DOI:10.1038/118874a0.
  15. ^ Asimov، I. (1966). The Neutrino, Ghost Particle of the Atom. Garden City (NY): دابلداي. LCCN 660-3.
  16. ^ Asimov، I. (1966). The Universe From Flat Earth To Quasar. New York (NY): Walker. LCCN 660-5.
  17. ^ Villard، P. (1900). "Sur la réflexion et la réfraction des rayons cathodiques et des rayons déviables du radium". Comptes Rendus des Séances de l'Académie des Sciences (Paris). ج. 130: 1010–1012. (بالفرنسية)
  18. ^ Villard، P. (1900). "Sur le rayonnement du radium". Comptes Rendus des Séances de l'Académie des Sciences (Paris). ج. 130: 1178–1179. (بالفرنسية)
  19. ^ Rutherford، E. (1914). "The Wavelength of the Soft Gamma Rays from Radium B". Philosophical Magazine. ج. 27: 854–868. {{استشهاد بدورية محكمة}}: الوسيط غير المعروف |المؤلفين المشاركين= تم تجاهله يقترح استخدام |authors= (مساعدة)
  20. ^ Kobychev، V.V. (2005). "Constraints on the photon charge from observations of extragalactic sources". Astronomy Letters. ج. 31: 147–151. DOI:10.1134/1.1883345. {{استشهاد بدورية محكمة}}: الوسيط غير المعروف |المؤلفين المشاركين= تم تجاهله يقترح استخدام |authors= (مساعدة)
  21. ^ Role as gauge boson and polarization section 5.1 in Aitchison، I.J.R.؛ Hey، A.J.G. (1993). Gauge Theories in Particle Physics. IOP Publishing.
  22. ^ See p.31 in Amsler، C. (2008). "Review of Particle Physics". Physics Letters. ج. B667: 1–1340. {{استشهاد بدورية محكمة}}: الوسيط غير المعروف |المؤلفين المشاركين= تم تجاهله يقترح استخدام |authors= (مساعدة).
  23. ^ See section 1.6 in Alonso، M.؛ Finn، E.J. (1968). Fundamental University Physics Volume III: Quantum and Statistical Physics. أديسون-ويسلي [الإنجليزية].
  24. ^ Electromagnetic radiation is made of photons
  25. ^ David Mermin (فبراير 1984). "Relativity without light". American Journal of Physics. 52(2): 119–124.

المصادر

By date of publication:

Education with single photons: