انتقل إلى المحتوى

آلية عمل (صيدلة)

من ويكيبيديا، الموسوعة الحرة

في مجال علم الأدوية، يشير مصطلح آلية العمل (إم أو إيه) إلى التفاعل الكيميائي الحيوي المحدد الذي تحقق من خلاله مادة دوائية تأثيرها الدوائي.[1] تتضمن آلية العمل عادةً ذكر المستهدفات الجزيئية المحددة التي يرتبط بها الدواء، مثل الإنزيم أو المستقبلات.[2] تمتلك مواقع المستقبلات ألفة محددة للأدوية بناءً على التركيب الكيميائي للدواء، بالإضافة إلى الإجراء المحدد الذي يحدث هناك.

تحقق الأدوية التي لا ترتبط بالمستقبلات تأثيرَها العلاجي المطابق ببساطة من خلال التفاعل مع الخصائص الكيميائية أو الفيزيائية في الجسم. من الأمثلة الشائعة للأدوية التي تعمل بهذه الطريقة مضادات الحموضة والملينات.

في المقابل، يصف نمط العمل التغيرات الوظيفية أو التشريحية، على المستوى الخلوي، الناتجة عن تعرض كائن حي لمادة ما.

لماذا تعد آلية العمل مهمة

[عدل]

من المهم توضيح آلية عمل الأدوية والأدوية الجديدة لعدة أسباب:

  • في حالة تطوير الأدوية المضادة للعدوى، تسمح المعلومات بتوقع المشاكل المتعلقة بالسلامة السريرية. من المحتمل أن تتسبب الأدوية التي تعطل الغشاء السيتوبلازمي أو سلسلة نقل الإلكترون مثلًا بحدوث مشاكل سمية أكثر من تلك التي تستهدف مكونات جدار الخلية (الببتيدوغليكان أو البيتا غلوكانات) أو الريبوسوم 70 إس، وهي بنى غير موجودة في الخلايا البشرية.[3][4]
  • من خلال معرفة التفاعل الحاصل بين موقع محدد لدواء ما ومستقبِل معين، يمكن صياغة أدوية أخرى بطريقة تكرر هذا التفاعل، وبالتالي تنتج نفس التأثيرات العلاجية. تُستخدم هذه الطريقة في الواقع لإيجاد أدوية جديدة.
  • يمكنها المساعدة في تحديد المرضى الأكثر احتمالًا للاستجابة للعلاج. على سبيل المثال، من المعروف أن التراستوزوماب، وهو دواء لسرطان الثدي، يستهدف البروتين إتش إي آر 2، لذلك يمكن فحص الأورام لتحري وجود هذا الجزيء لتحديد ما إن كان المريض سيستفيد من العلاج بالتراستوزوماب أم لا.[5][6]
  • قد تفسح المجال لتحديد الجرعات بشكل أفضل بسبب إمكانية مراقبة آثار الدواء على المسار المستهدف لدى المريض. على سبيل المثال، تُحدد جرعة الستاتينات عادةً عن طريق قياس مستويات الكوليسترول في الدم لدى المريض.
  • قد تسمح بتوليف الأدوية بطريقة تقلل من احتمالية نشوء مقاومة للدواء. من خلال معرفة البنية الخلوية التي يعمل عليها دواء مضاد للعدوى أو مضاد للسرطان، فمن الممكن إعداد مزيج يثبط أهدافًا متعددة في نفس الوقت، وبذلك تقليل خطر أن تؤدي طفرة واحدة في الحمض النووي للميكروب أو للورم إلى مقاومة الدواء وفشل العلاج.[7][8][9]
  • قد تسمح بتحديد دواعي الاستعمال الأخرى للدواء. على سبيل المثال، سمح اكتشاف أن السيلدينافيل يثبط بروتينات الفوسفوديستراز5 (بّي دي إي-5) بإعادة استخدام هذا الدواء في علاج فرط ضغط الدم الشرياني الرئوي، إذ يُعبَّر عن البّي دي إي-5 في الرئتين المصابتين بفرط الضغط الرئوي.[10][11]

كيف تُحدد آلية العمل

[عدل]

طرق تعتمد على الفحص المجهري

[عدل]

تحرض المركبات النشطة حيويًا تغيرات النمط الظاهري في الخلايا المستهدفة، وهي تغيرات يمكن ملاحظتها بواسطة الفحص المجهري، [12]

وقد تعطي فكرة حول آلية عمل المركب.

في العوامل المضادة للبكتيريا، قد يدل تحول الخلايا المستهدفة إلى جبلة كروية على تثبيط تصنيع الببتيدوغليكان، وقد يكون تخيط الخلايا المستهدفة مؤشرًا على تثبيط البروتين الرابط للبنسلين والبروتين زِد واصطناع الدنا. تشمل التغييرات الأخرى التي تسببها العوامل المضادة للبكتيريا تشكيل الخلايا البيضوية، والأشكال متعددة الخلايا الكاذبة، وتورم الموضعي، وتشكل الانتفاخ، والنزيف، وثخانة الببتيدوغليكان. في حالة العوامل المضادة للسرطان، يشير تشكل فقاعة إلى أن المركب يمزق الغشاء الخلوي.[13]

إن الحد الحالي لهذا النهج هو الوقت اللازم لإنشاء البيانات وتفسيرها بطريقة يدوية، ولكن التقدم في الفحص المجهري الآلي وتحليل الصور قد يساعد في حل هذه المشكلة.

مراجع

[عدل]
  1. ^ Spratto, G.R.؛ Woods, A.L. (2010). Delmar Nurse's Drug Handbook. Cengage Learning. ISBN:978-1-4390-5616-5.
  2. ^ Grant, R.L.; Combs, A.B.; Acosta, D. (2010) "Experimental Models for the Investigation of Toxicological Mechanisms". In McQueen, C.A. Comprehensive Toxicology (2nd ed.). Oxford: Elsevier. p. 204. (ردمك 978-0-08-046884-6).
  3. ^ Cushnie, T.P.؛ O’Driscoll, N.H.؛ Lamb, A.J. (2016). "Morphological and ultrastructural changes in bacterial cells as an indicator of antibacterial mechanism of action". Cellular and Molecular Life Sciences. ج. 73 ع. 23: 4471–4492. DOI:10.1007/s00018-016-2302-2. hdl:10059/2129. PMID:27392605. مؤرشف من الأصل في 2019-08-05.
  4. ^ Chang, C.C.؛ Slavin, M.A.؛ Chen, S.C. (2017). "New developments and directions in the clinical application of the echinocandins". Archives of Toxicology. ج. 91 ع. 4: 1613–1621. DOI:10.1007/s00204-016-1916-3. PMID:28180946.
  5. ^ No authors listed (2010). "Mechanism matters". Nature Medicine. ج. 16 ع. 4: 347. DOI:10.1038/nm0410-347. PMID:20376007.
  6. ^ Joensuu, H. (2017). "Escalating and de-escalating treatment in HER2-positive early breast cancer". Cancer Treatment Reviews. ج. 52: 1–11. DOI:10.1016/j.ctrv.2016.11.002. PMID:27866067. مؤرشف من الأصل في 2019-08-05.
  7. ^ Cihlar, T.؛ Fordyce, M. (2016). "Current status and prospects of HIV treatment". Current Opinion in Virology. ج. 18: 50–56. DOI:10.1016/j.coviro.2016.03.004. PMID:27023283.
  8. ^ Antony, H.A.؛ Parija, S.C. (2016). "Antimalarial drug resistance: An overview". Tropical Parasitology. ج. 6 ع. 1: 30–41. DOI:10.4103/2229-5070.175081. PMC:4778180. PMID:26998432.{{استشهاد بدورية محكمة}}: صيانة الاستشهاد: دوي مجاني غير معلم (link)
  9. ^ Bozic, I.; Reiter, J.G.; Allen, B.; Antal, T.; Chatterjee, K.; Shah, P.; Moon, Y.S.; Yaqubie, A.; Kelly, N.; Le, D.T.; Lipson, E.J.; Chapman, P.B.; Diaz, L.A.; Vogelstein, B., Nowak, M.A. (2013). "Evolutionary dynamics of cancer in response to targeted combination therapy". eLife. ج. 2: Article ID e00747. DOI:10.7554/eLife.00747. PMC:3691570. PMID:23805382.{{استشهاد بدورية محكمة}}: صيانة الاستشهاد: أسماء متعددة: قائمة المؤلفين (link) صيانة الاستشهاد: دوي مجاني غير معلم (link)
  10. ^ Tari, L.؛ Vo, N.؛ Liang, S.؛ Patel, J.؛ Baral, C.؛ Cai, J. (2012). "Identifying novel drug indications through automated reasoning". PLOS ONE. ج. 7 ع. 7: Article e40946. DOI:10.1371/journal.pone.0040946. PMC:3402456. PMID:22911721.{{استشهاد بدورية محكمة}}: صيانة الاستشهاد: دوي مجاني غير معلم (link)
  11. ^ Hayardeny, L. (2014). Why is it important to know the mode of action of drugs? (بالإنجليزية). New Frontiers in Neuroscience and Methods of Transdisciplinary Education Workshop, Tel Aviv University, Israel: Tel Aviv University. Archived from the original (Conference presentation) on 2020-06-02. Retrieved 2017-03-18.
  12. ^ Fetz, V.؛ Prochnow, H.؛ Brönstrup, M.؛ Sasse, F. (2016). "Target identification by image analysis" (PDF). Natural Product Reports. ج. 33 ع. 5: 655–667. DOI:10.1039/c5np00113g. hdl:10033/621283. PMID:26777141. مؤرشف من الأصل (PDF) في 2020-06-02.
  13. ^ Dubovskii, P.V.؛ Vassilevski, A.A.؛ Kozlov, S.A.؛ Feofanov, A.V.؛ Grishin, E.V.؛ Efremov, R.G. (2015). "Latarcins: versatile spider venom peptides". Cellular and Molecular Life Sciences. ج. 72 ع. 23: 4501–4522. DOI:10.1007/s00018-015-2016-x. PMID:26286896.