من ويكيبيديا، الموسوعة الحرة
| لا يزال النص الموجود في هذه الصفحة في مرحلة الترجمة إلى العربية. إذا كنت تعرف اللغة المستعملة، لا تتردد في الترجمة. |
الصيغة:Formulation
معاملات كلبسش-غوردان هي حلول ل:
بشكل مباشر (صريح) إلى:
The summation is extended over all integer k for which the argument of every factorial is nonnegative.[1]
For brevity, solutions with m < 0 and j1 < j2 are omitted. They may be calculated using the simple relations
- .
و
- .
عندما تكون j2=0، فإن معاملات كلبسش-غوردان تعطي
.
m=1
|
j
|
m1, m2
|
|
1
|
1/2, 1/2
|
|
|
m=0
|
j
|
m1, m2
|
|
1
|
0
|
1/2, -1/2
|
|
|
-1/2, 1/2
|
|
|
|
m=3/2
|
j
|
m1, m2
|
|
3/2
|
1, 1/2
|
|
|
m=1/2
|
j
|
m1, m2
|
|
3/2
|
1/2
|
1, -1/2
|
|
|
0, 1/2
|
|
|
|
m=2
|
j
|
m1, m2
|
|
2
|
1, 1
|
|
|
m=1
|
j
|
m1, m2
|
|
2
|
1
|
1, 0
|
|
|
0, 1
|
|
|
|
m=0
|
j
|
m1, m2
|
|
2
|
1
|
0
|
1, -1
|
|
|
|
0, 0
|
|
|
|
-1, 1
|
|
|
|
|
m=2
|
j
|
m1, m2
|
|
2
|
3/2, 1/2
|
|
|
m=1
|
j
|
m1, m2
|
|
2
|
1
|
3/2, -1/2
|
|
|
1/2, 1/2
|
|
|
|
m=0
|
j
|
m1, m2
|
|
2
|
1
|
1/2, -1/2
|
|
|
-1/2, 1/2
|
|
|
|
m=5/2
|
j
|
m1, m2
|
|
5/2
|
3/2, 1
|
|
|
m=3/2
|
j
|
m1, m2
|
|
5/2
|
3/2
|
3/2, 0
|
|
|
1/2, 1
|
|
|
|
m=1/2
|
j
|
m1, m2
|
|
5/2
|
3/2
|
1/2
|
3/2, -1
|
|
|
|
1/2, 0
|
|
|
|
-1/2, 1
|
|
|
|
|
m=3
|
j
|
m1, m2
|
|
3
|
3/2, 3/2
|
|
|
m=2
|
j
|
m1, m2
|
|
3
|
2
|
3/2, 1/2
|
|
|
1/2, 3/2
|
|
|
|
m=1
|
j
|
m1, m2
|
|
3
|
2
|
1
|
3/2, -1/2
|
|
|
|
1/2, 1/2
|
|
|
|
-1/2, 3/2
|
|
|
|
|
m=0
|
j
|
m1, m2
|
|
3
|
2
|
1
|
0
|
3/2, -3/2
|
|
|
|
|
1/2, -1/2
|
|
|
|
|
-1/2, 1/2
|
|
|
|
|
-3/2, 3/2
|
|
|
|
|
|
m=5/2
|
j
|
m1, m2
|
|
5/2
|
2, 1/2
|
|
|
m=3/2
|
j
|
m1, m2
|
|
5/2
|
3/2
|
2, -1/2
|
|
|
1, 1/2
|
|
|
|
m=1/2
|
j
|
m1, m2
|
|
5/2
|
3/2
|
1, -1/2
|
|
|
0, 1/2
|
|
|
|
m=3
|
j
|
m1, m2
|
|
3
|
2, 1
|
|
|
m=2
|
j
|
m1, m2
|
|
3
|
2
|
2, 0
|
|
|
1, 1
|
|
|
|
m=1
|
j
|
m1, m2
|
|
3
|
2
|
1
|
2, -1
|
|
|
|
1, 0
|
|
|
|
0, 1
|
|
|
|
|
m=0
|
j
|
m1, m2
|
|
3
|
2
|
1
|
1, -1
|
|
|
|
0, 0
|
|
|
|
-1, 1
|
|
|
|
|
m=7/2
|
j
|
m1, m2
|
|
7/2
|
2, 3/2
|
|
|
m=5/2
|
j
|
m1, m2
|
|
7/2
|
5/2
|
2, 1/2
|
|
|
1, 3/2
|
|
|
|
m=3/2
|
j
|
m1, m2
|
|
7/2
|
5/2
|
3/2
|
2, -1/2
|
|
|
|
1, 1/2
|
|
|
|
0, 3/2
|
|
|
|
|
m=1/2
|
j
|
m1, m2
|
|
7/2
|
5/2
|
3/2
|
1/2
|
2, -3/2
|
|
|
|
|
1, -1/2
|
|
|
|
|
0, 1/2
|
|
|
|
|
-1, 3/2
|
|
|
|
|
|
m=4
|
j
|
m1, m2
|
|
4
|
2, 2
|
|
|
m=3
|
j
|
m1, m2
|
|
4
|
3
|
2, 1
|
|
|
1, 2
|
|
|
|
m=2
|
j
|
m1, m2
|
|
4
|
3
|
2
|
2, 0
|
|
|
|
1, 1
|
|
|
|
0, 2
|
|
|
|
|
m=1
|
j
|
m1, m2
|
|
4
|
3
|
2
|
1
|
2, -1
|
|
|
|
|
1, 0
|
|
|
|
|
0, 1
|
|
|
|
|
-1, 2
|
|
|
|
|
|
m=0
|
j
|
m1, m2
|
|
4
|
3
|
2
|
1
|
0
|
2, -2
|
|
|
|
|
|
1, -1
|
|
|
|
|
|
0, 0
|
|
|
|
|
|
-1, 1
|
|
|
|
|
|
-2, 2
|
|
|
|
|
|
|
m=3
|
j
|
m1, m2
|
|
3
|
5/2, 1/2
|
|
|
m=2
|
j
|
m1, m2
|
|
3
|
2
|
5/2, -1/2
|
|
|
3/2, 1/2
|
|
|
|
m=1
|
j
|
m1, m2
|
|
3
|
2
|
3/2, -1/2
|
|
|
1/2, 1/2
|
|
|
|
m=0
|
j
|
m1, m2
|
|
3
|
2
|
1/2, -1/2
|
|
|
-1/2, 1/2
|
|
|
|
m=7/2
|
j
|
m1, m2
|
|
7/2
|
5/2, 1
|
|
|
m=5/2
|
j
|
m1, m2
|
|
7/2
|
5/2
|
5/2, 0
|
|
|
3/2, 1
|
|
|
|
m=3/2
|
j
|
m1, m2
|
|
7/2
|
5/2
|
3/2
|
5/2, -1
|
|
|
|
3/2, 0
|
|
|
|
1/2, 1
|
|
|
|
|
m=1/2
|
j
|
m1, m2
|
|
7/2
|
5/2
|
3/2
|
3/2, -1
|
|
|
|
1/2, 0
|
|
|
|
-1/2, 1
|
|
|
|
|
m=4
|
j
|
m1, m2
|
|
4
|
5/2, 3/2
|
|
|
m=3
|
j
|
m1, m2
|
|
4
|
3
|
5/2, 1/2
|
|
|
3/2, 3/2
|
|
|
|
m=2
|
j
|
m1, m2
|
|
4
|
3
|
2
|
5/2, -1/2
|
|
|
|
3/2, 1/2
|
|
|
|
1/2, 3/2
|
|
|
|
|
m=1
|
j
|
m1, m2
|
|
4
|
3
|
2
|
1
|
5/2, -3/2
|
|
|
|
|
3/2, -1/2
|
|
|
|
|
1/2, 1/2
|
|
|
|
|
-1/2, 3/2
|
|
|
|
|
|
m=0
|
j
|
m1, m2
|
|
4
|
3
|
2
|
1
|
3/2, -3/2
|
|
|
|
|
1/2, -1/2
|
|
|
|
|
-1/2, 1/2
|
|
|
|
|
-3/2, 3/2
|
|
|
|
|
|
m=9/2
|
j
|
m1, m2
|
|
9/2
|
5/2, 2
|
|
|
m=7/2
|
j
|
m1, m2
|
|
9/2
|
7/2
|
5/2, 1
|
|
|
3/2, 2
|
|
|
|
m=5/2
|
j
|
m1, m2
|
|
9/2
|
7/2
|
5/2
|
5/2, 0
|
|
|
|
3/2, 1
|
|
|
|
1/2, 2
|
|
|
|
|
m=3/2
|
j
|
m1, m2
|
|
9/2
|
7/2
|
5/2
|
3/2
|
5/2, -1
|
|
|
|
|
3/2, 0
|
|
|
|
|
1/2, 1
|
|
|
|
|
-1/2, 2
|
|
|
|
|
|
m=1/2
|
j
|
m1, m2
|
|
9/2
|
7/2
|
5/2
|
3/2
|
1/2
|
5/2, -2
|
|
|
|
|
|
3/2, -1
|
|
|
|
|
|
1/2, 0
|
|
|
|
|
|
-1/2, 1
|
|
|
|
|
|
-3/2, 2
|
|
|
|
|
|
|